首页> 外文OA文献 >Bayesian Analysis of Latent Trait Hierarchical Models for Multiple Binary Outcomes in Cluster Randomized Clinical Trials
【2h】

Bayesian Analysis of Latent Trait Hierarchical Models for Multiple Binary Outcomes in Cluster Randomized Clinical Trials

机译:聚类随机临床试验中多个二进制结果的潜在性状分层模型的贝叶斯分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In clinical trials, multiple endpoints for treatment efficacy often are obtained, and in addition, data may be collected hierarchically. Statistical analyses become very challenging for this multidimensional hierarchical data, particularly with data collected at more than two levels. We propose a latent variable approach to assess an intervention effect on multiple binary outcomes from three-level hierarchical data. This approach incorporates the correlation structure into one or more latent outcomes, and simultaneously regresses the latent outcome(s) on observed covariates. Random effects are included to model the hierarchical structure. Parameters estimation is done using a fully Bayesian approach implemented in WinBUGS. We first illustrate the approach in a cluster randomized clinical trial of three interventions to improve the processes of care for outpatients with pneumonia. Four binary outcomes are collected at the patient-level and clustered at the provider and clinic site levels. Simulation studies are conducted to check the algorithm and computational implementation. Then, we extend the one latent trait model to a two-latent trait model using eight outcomes from both outpatient and inpatient care. This latent modeling approach provides a comprehensive way to analyze multivariate hierarchical data. The method not only allows assessment of intervention effects with respect to multiple outcomes, but also assesses the relationship between outcomes, identifies those outcomes that carry the most information about the latent trait(s), and provides a summary measure of the "quality of care" at each clinical site.This work extends existing methods to model multivariate binary endpoints in a cluster-randomized clinical trial. The public health significance of this study is the potential usefulness of this approach to quantify intervention (or exposure) effects with regard to multiple outcomes in hierarchical data setting, which arises frequently in medical and epidemiologic studies.
机译:在临床试验中,通常可以获得治疗功效的多个终点,此外,可以分层收集数据。对于这种多维层次结构数据,尤其是从两个以上级别收集的数据而言,统计分析变得非常具有挑战性。我们提出了一种潜在变量方法,以评估对三级分层数据对多个二进制结果的干预效果。该方法将相关结构合并到一个或多个潜在结果中,并同时对观察到的协变量回归潜在结果。包括随机效应以建模层次结构。使用WinBUGS中实现的完全贝叶斯方法进行参数估计。我们首先在一项包含三种干预措施的整群随机临床试验中说明该方法,以改善门诊肺炎患者的护理过程。在患者级别收集了四个二进制结果,并在提供者和诊所站点级别进行了聚类。进行仿真研究以检查算法和计算实现。然后,我们使用门诊和住院护理的八个结果将一个潜在特征模型扩展为两个潜在特征模型。这种潜在的建模方法提供了一种分析多元层次结构数据的综合方法。该方法不仅可以评估针对多个结局的干预效果,还可以评估结局之间的关系,识别那些携带有关潜在特征的信息最多的结局,并提供“护理质量”的总结指标。 ”。这项工作扩展了现有方法,以在集群随机临床试验中对多元二元终点进行建模。这项研究对公共卫生的意义在于,这种方法对于量化分层数据设置中多个结局的干预(或暴露)效果可能具有实用性,这在医学和流行病学研究中经常出现。

著录项

  • 作者

    Zhao Xinhua;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号