首页> 外文OA文献 >Cognitive Mechanisms and Computational Models: Explanation in Cognitive Neuroscience
【2h】

Cognitive Mechanisms and Computational Models: Explanation in Cognitive Neuroscience

机译:认知机制和计算模型:认知神经科学中的解释

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cognitive Neuroscience seeks to integrate cognitive psychology and neuroscience. I critique existing analyses of this integration project, and offer my own account of how it ought to be understood given the practices of researchers in these fields. ududA recent proposal suggests that integration between cognitive psychology and neuroscience can be achieved `seamlessly' via mechanistic explanation. Cognitive models are elliptical mechanism sketches, according to this proposal. This proposal glosses over several difficulties concerning the practice of cognitive psychology and the nature of cognitive models, however. Although psychology's information-processing models superficially resemble mechanism sketches, they in fact systematically include and exclude different kinds of information. I distinguish two kinds of information-processing model, neither of which specifies the entities and activities characteristic of mechanistic models, even sketchily. Furthermore, theory development in psychology does not involve the filling in of these missing details, but rather refinement of the sorts of models they start out as. I contrast the development of psychology's attention filter models with the development of neurobiology's models of sodium channel filtering.ududI argue that extending the account of mechanisms to include what I define as generic mechanisms provides a more promising route towards integration. Generic mechanisms are the in-the-world counterparts to abstract types. They thus have causal-explanatory powers which are shared by all the tokens that instantiate that type. This not only provides a way for generalizations to factor into mechanistic explanations, which allows for the `upward-looking' explanations needed for integrating cognitive models, but also solves some internal problems in the mechanism literature concerning schemas and explanatory relevance.ududI illustrate how generic mechanisms are discovered and used with examples from computational cognitive neuroscience. I argue that connectionist models can be understood as approximations to generic brain mechanisms, which resolves a longstanding philosophical puzzle as to their role. Furthermore, I argue that understanding scientific models in general in terms of generic mechanisms allows for a unified account of the types of inferences made in modeling and in experiment.
机译:认知神经科学旨在整合认知心理学和神经科学。我批评了该集成项目的现有分析,并就这些领域的研究人员的实践提出了自己的理解。 ud ud最近的一项提议表明,可以通过机制解释“无缝”实现认知心理学和神经科学之间的整合。根据该建议,认知模型是椭圆机制的草图。但是,该建议掩盖了有关认知心理学实践和认知模型本质的若干困难。尽管心理学的信息处理模型表面上类似于机制草图,但实际上它们系统地包含和排除了不同种类的信息。我区分了两种信息处理模型,这两种信息处理模型都不是简单地指定机制模型的实体和活动特征。此外,心理学的理论发展并不涉及这些缺失细节的填写,而是对它们最初的模型的完善。我将心理学的注意力过滤器模型的发展与神经生物学的钠通道过滤模型的发展进行了对比。 ud ud我认为,将机制的研究范围扩展到包括我定义的通用机制,可以为整合提供一条更有希望的途径。泛型机制与抽象类型在世界上相对应。因此,它们具有因果解释能力,所有实例化该类型的令牌都具有这种因果解释能力。这不仅为泛化提供了一种机制化解释的方式,从而为整合认知模型提供了“向上看”的解释,而且还解决了机制文献中有关图式和解释相关性的一些内部问题。通过计算认知神经科学的示例,说明了如何发现和使用通用机制。我认为,联系主义模型可以理解为通用大脑机制的近似,这解决了长期以来关于其作用的哲学难题。此外,我认为,从通用机制的角度来全面理解科学模型可以统一解释建模和实验中的推论类型。

著录项

  • 作者

    Stinson Catherine E;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号