首页> 外文OA文献 >Capturing the Non-Linear Dynamics of Particle Migration in Complex Viscous Flows
【2h】

Capturing the Non-Linear Dynamics of Particle Migration in Complex Viscous Flows

机译:捕获复杂粘性流中颗粒迁移的非线性动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low Reynolds number multiphase flows are prevalent in many industrial applications, such as separations processes, cell growth in bioreactors and catalysis operations. Due to the interplay between phases, the characterization of these flows is rather complex yet necessary to fully understand the intrinsic dynamics. This study discusses the interactions between a viscous fluid phase and rigid particles dispersed within the fluid.The particles are observed to spontaneously migrate within the toroidal structures that form between rotating flat-disk impellers to repeatable non-trivial asymptotic locations. The stability of the asymptotic migration positions is dependent on flow and particle conditions and includes both the exact center of the torus as well as other intermediate locations that are classified as higher order clusters. It is of particular interest that the particle clusters coincide with the location of unmixed islands within the underlying flow, illustrating significant coupling between the solid and fluid behavior. Furthermore, the results also show that migratory competition can occur when multiple particles are introduced into the same flow region. This behavior is also examined using a one-way coupled Lagrangian-Eulerian model based on the Basset-Boussinesq-Oseen (BBO) equation. In this approach, particle motion is captured by incorporating a variety of fluid-particle force models into a Eulerian treatment of the flow field. Although a regular cellular flow is able to capture rotation rate and particle diameter effects, it is unable to provide insight into interactions between the particles and any secondary island structures that exist in many rotating flow systems. Thus, a 2D approximation of the experimental cellular flow is obtained by a perturbing a cellular flow streamfunction to produce fluid island structures. The model was then used to analyze a dilute suspension of slightly non-neutrally buoyant solid spheres as they migrate across the curved fluid streamlines of the viscous flow. The effect of the Saffman lift force on the lateral migration of the solid spheres is also evaluated. Without this additional term, the BBO model predicts an inward motion solely for light particles, whereas heavy particles are predicted to migrate outwards. However when included into the BBO model, both types of particles exhibit inward migration which is analogous to our experimental work. The equilibrium particle location could be manipulated by varying the flow characteristics and stability of the fluid islands.%In addition, the preliminary results of a more robust continuum method to evaluate the flow field within a stirred tank are presented. Finally, possible experimental and computational directions of this research are presented, particularly as it applies to other simple rotating flows. It is believed that this thesis significantly contributes to the understanding and perhaps eventual manipulation of the hydrodynamic interactions within such systems to yield spontaneously organized, `structured suspensions'. This work can be extended to study the migration behavior of other discrete entities within a flow such as bubbles or droplets by appropriate modification of the experimental and computational procedures to other geometries.
机译:低雷诺数多相流在许多工业应用中很普遍,例如分离过程,生物反应器中的细胞生长和催化操作。由于阶段之间的相互作用,这些流的表征相当复杂,但对于充分了解内在动力学是必需的。这项研究讨论了粘性流体相与分散在流体中的刚性颗粒之间的相互作用,观察到这些颗粒在旋转的平盘叶轮之间形成的环形结构内自发迁移至可重复的非平凡渐近位置。渐近迁移位置的稳定性取决于流动和粒子条件,并且包括圆环的精确中心以及被归类为高阶簇的其他中间位置。特别令人感兴趣的是,粒子团与底层流中未混合岛的位置重合,说明了固体和流体行为之间的显着耦合。此外,结果还表明,当将多个颗粒引入同一流动区域时,可能发生迁移竞争。还使用基于Basset-Boussinesq-Oseen(BBO)方程的单向耦合Lagrangian-Eulerian模型检查了此行为。在这种方法中,通过将各种流体-粒子力模型合并到流场的欧拉处理中来捕获粒子运动。尽管规则的细胞流能够捕获旋转速率和粒径影响,但它无法深入了解颗粒与许多旋转流系统中存在的任何二级岛结构之间的相互作用。因此,通过扰动细胞流的流函数以产生流体岛结构,获得了实验细胞流的二维近似。然后使用该模型分析稍微中性浮力的固体球的稀悬浮液,这些固体球在粘性流的弯曲流体流线上迁移。萨夫曼提升力对固体球体横向迁移的影响也得到了评估。如果没有这个额外的术语,则BBO模型仅预测轻粒子的向内运动,而重粒子则被预测向外迁移。但是,当包含在BBO模型中时,两种类型的粒子都显示出向内迁移,这类似于我们的实验工作。平衡粒子的位置可以通过改变流体岛的流动特性和稳定性来控制。%此外,还提出了一种更强大的连续谱方法来评估搅拌釜内的流场的初步结果。最后,给出了本研究的可能的实验和计算方向,特别是将其应用于其他简单的旋转流时。可以相信,该论文极大地有助于理解和最终操纵这种系统中的流体动力学相互作用,以产生自发的,有组织的“结构悬浮液”。通过将实验和计算程序适当修改为其他几何形状,可以扩展这项工作来研究流中其他离散实体(例如气泡或小滴)的迁移行为。

著录项

  • 作者

    Abatan Abimbola Adetola;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号