首页> 外文OA文献 >K-Means, Mean Shift, and SLIC Clustering Algorithms: A Comparison of Performance in Color-based Skin Segmentation
【2h】

K-Means, Mean Shift, and SLIC Clustering Algorithms: A Comparison of Performance in Color-based Skin Segmentation

机译:K均值,均值漂移和SLIC聚类算法:基于颜色的皮肤分割性能的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Commonly used in computer vision, segmentation is grouping pixels into meaningful or perceptually similar regions. In this work, we are going to evaluate the performance of three popular data-clustering algorithms, the K-means, mean shift and SLIC algorithms, in the segmentation of human skin based on color.ududThe K-means algorithm Iteratively aims to group data samples into K clusters, whereudeach sample belongs to the cluster with the nearest mean. The mean shift algorithm is a non-udparametric algorithm that clusters data iteratively by finding the densest regions (clusters) in a feature space. An enhanced version of the classic K-means algorithm, the SLIC limits the search region to audsmall area around the cluster reducing the algorithm complexity to be only dependent onudthe number of pixels in the image. It also provides control over the compactness of theudclusters.ududColor-based skin segmentation algorithms depend on both a color space at which segmentation is performed and a classification method used to determine whether a pixel is skin or non-skin. We have implemented the K-means, mean shift andudSLIC algorithms in the RGB color space to detect human skin. Our method beginsudby clustering images using these algorithms and then segmenting the clustered regionsudoccupied by skin. Pixels in the clusters are classified as skin or non-skin using the Kovacudmodel.ududWe have evaluated the algorithms' performance on the SFA database (controlled environ-udment) and on another database created for testing on an uncontrolled environment. The performance has been evaluated using time complexity, F1 score, recall, and precision. We have found that on average the mean shiftudalgorithm triumphs over the three algorithms in terms of performance while the SLIC algorithms holds an advantage being the fastest.The K-means algorithm has a good performance when the number of clusters K is between 10 and 15, whereas the mean shift algorithm has good performance when the bandwidth h is between 0.03 and 0.06. The SLIC algorithm maxes out its performance at around k = 100 and the number of clusters can be increased to K = 300 without remarkably increasing the complexity.
机译:分割通常用于计算机视觉,它是将像素分为有意义的或在感觉上相似的区域。在这项工作中,我们将评估三种流行的数据聚类算法(K均值,均值漂移和SLIC算法)在基于颜色的人皮肤分割中的性能。 ud udK-means算法迭代地旨在将数据样本分组为K个聚类,其中 udeach样本属于具有最均值的聚类。均值漂移算法是一种非参数算法,通过找到特征空间中最密集的区域(簇)来迭代地对数据进行聚类。 SLIC是经典K均值算法的增强版本,将搜索区域限制为群集周围很小的区域,从而降低了算法的复杂度,仅取决于图像中像素的数量。它还可以控制 udclusters的紧凑性。 ud ud基于颜色的皮肤分割算法不仅取决于执行分割的颜色空间,还取决于用于确定像素是皮肤还是非皮肤的分类方法。我们已经在RGB颜色空间中实现了K均值,均值漂移和 udSLIC算法,以检测人的皮肤。我们的方法开始 udby使用这些算法对图像进行聚类,然后对被皮肤占据的聚类区域进行分割。使用Kovac udmodel将群集中的像素分为皮肤或非皮肤。 ud ud我们已经在SFA数据库(受控环境 udment)和为在不受控制的环境下测试而创建的另一个数据库上评估了算法的性能。使用时间复杂度,F1得分,召回率和准确性对性能进行了评估。我们发现,在性能方面,平均而言,三种算法的平均移位算法均胜出,而SLIC算法则具有最快的优势。当聚类数K在10和10之间时,K均值算法具有良好的性能。如图15所示,而当带宽h在0.03至0.06之间时,均值漂移算法具有良好的性能。 SLIC算法可在大约k = 100的情况下最大化其性能,并且簇数可以增加到K = 300,而不会显着增加复杂度。

著录项

  • 作者

    Alorf Abdulkarim;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号