首页> 外文OA文献 >Early Prediction Of Late-Life Depression Remission: Multi-Factor Kernel-Based Machine Learning Utilizing Single Dose Pharmacological Functional Magnetic Resonance Imaging
【2h】

Early Prediction Of Late-Life Depression Remission: Multi-Factor Kernel-Based Machine Learning Utilizing Single Dose Pharmacological Functional Magnetic Resonance Imaging

机译:早期抑郁症缓解的预测:利用单剂量药理功能磁共振成像的基于多核的机器学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Treatment of major depressive disorder (MDD) currently relies on a prolonged trial and error process to identify the best pharmacological regimen. This process is further prolonged in older adults with major depressive disorder (Late-Life Depression or LLD), where it is associated with a host of negative outcomes, including suicide, worsening medical comorbidity, and poor quality of life. Functional magnetic resonance imaging (fMRI) brain changes have been associated with depression severity and treatment outcomes. Previous studies have shown that recovery from depression can be predicted using both pre-treatment neuroimaging as well as follow-up scans from the early treatment period. Pharmacological functional magnetic resonance imaging (phMRI) is an approach that utilizes multiple fMRI scans to investigate changes in functional neuroimaging following acute doses of pharmacotherapy. It has been demonstrated that antidepressants have a fast uptake period, effecting resting state networks as well as functional brain activation after only a single dose. We aimed to evaluate the efficacy of phMRI to identify these very early (single dose) functional changes, and use these to predict remission. Data was collected from an open-label pharmacologic treatment study of LLD (N=51). Multi-modal MRI, including phMRI, were acquired at 5 time-points. Results showed accurate prediction of depression remission from pre-treatment, as well as phMRI after only a single dose of pharmacotherapy. The trajectory of the neuroimaging changes across the treatment trial suggest an initial engagement of large scale resting networks, followed by engagement of implicit emotion control networks, and later changes in explicit emotion regulation. Utilizing kernel-based (multi-factor principal components) machine learning, we found that leveraging both pharmacological neuroimaging and clinical data improved prediction efficacy of remission. In this body of work, we have integrated multiple imaging modalities to explain the long delay in clinical response to antidepressants, and to identify early markers of response.
机译:目前,对重度抑郁症(MDD)的治疗依靠长时间的试验和错误过程来确定最佳的药理学方案。在患有严重抑郁症(晚期抑郁症或LLD)的老年人中,该过程会进一步延长,在该过程中,它会导致一系列负面结果,包括自杀,医疗合并症恶化和生活质量下降。功能性磁共振成像(fMRI)脑部变化与抑郁症的严重程度和治疗效果相关。先前的研究表明,可以使用治疗前的神经成像以及治疗早期的随访扫描来预测抑郁症的恢复情况。药理功能磁共振成像(phMRI)是一种利用多次fMRI扫描研究急性剂量药物治疗后功能性神经影像变化的方法。已经证明,抗抑郁药具有快速吸收期,仅需单次剂量即可影响静息状态网络以及功能性大脑激活。我们旨在评估phMRI的效果,以识别这些非常早期(单剂量)的功能性变化,并使用它们来预测缓解。数据来自LLD的开放标签药物治疗研究(N = 51)。在5个时间点获取了包括phMRI在内的多模式MRI。结果显示,仅需单剂药物治疗,即可准确预测治疗前抑郁症的缓解情况以及phMRI。在整个治疗试验中,神经影像变化的轨迹表明,首先是大规模静止网络的参与,然后是内隐情绪控制网络的参与,随后是外显情绪调节的变化。利用基于核的(多因素主成分)机器学习,我们发现利用药理神经影像学和临床数据均可改善缓解的预测功效。在这项工作中,我们集成了多种成像方式来解释抗抑郁药临床反应的长期延迟,并确定反应的早期标志物。

著录项

  • 作者

    Karim Helmet;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号