首页> 外文OA文献 >Small Molecule Associative CO₂ Thickeners for Improved Mobility Control
【2h】

Small Molecule Associative CO₂ Thickeners for Improved Mobility Control

机译:小分子缔合型CO 2增稠剂,可改善流动性控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobility control is one of the largest problems in carbon dioxide (CO2) miscible enhanced oil recovery. This can be traced back to the very low viscosity of high pressure carbon dioxide, 10-100 times lower than the original oil in place, which gives it an unfavorably high mobility ratio that results in viscous fingering, early CO2 breakthrough, decreased sweep efficiency, and high CO2 injected:oil recovered utilization ratios. CO2’s viscosity can also cause conformance control issues in stratified formations because it promotes CO2 flow into higher permeability, watered-out zones leaving a much smaller fraction of CO2 available to flow the lower permeability, oil-bearing zones of interest.udAn economical, direct CO2 thickener that is effective at dilute concentrations would be disruptive technology because it would not only mitigate all of the problems associated with an unfavorable mobility ratio, but it would also eliminate the need for the water-alternating-gas process for the reduction of CO2 relative permeability. These effects would be especially pronounced in horizontal, relatively homogeneous porous media. However, CO2 has never been thickened using an affordable or small molecule. To circumvent these obstacles, we have designed novel small molecules that self-assemble into viscosity enhancing supramolecular structures. Generally, our designs utilize both CO2-philes to enhance dissolution and steric effects that promote linear supramolecular structures. CO2-phobic groups are also included to promote self-assembly. This work primarily focuses on molecular designs based on highly CO2-philic silicones and CO2-phobic hydrogen bonding groups such as aromatic amides and ureas. Initial phase behavior studies on un-functionalized oligomeric silicones of varying molecular weight in CO2 served as solubility limits in that the inclusion of a CO2-phobic associating group(s) will result in a decrease in solubility (i.e. an increase in cloud point pressure). Along with exploration of various functional groups, we also demonstrate the effect of molecular geometry on final solution properties. Specifically, terminally functionalized branched silicones required a much higher mass concentration than silicone tailed core-associative molecules to achieve similar solution viscosities. The most promising thickening results are obtained with trisureas functionalized with three relatively short, branched CO2-philic silicone-based functionalities, most notably benzene tris((tri(trimethylsiloxy)silyl)propyl) urea. Replacement of one or two of these branched (tri(trimethylsiloxy)silyl) functional groups with linear oligomers of dimethyl siloxane renders compounds more CO2-soluble but less effective at thickening. In most cases, however, an organic co-solvent is required to attain solubility levels great enough for viscosity enhancement to occur.
机译:流动性控制是二氧化碳(CO2)可混溶提高采油率的最大问题之一。这可以追溯到高压二氧化碳的极低粘度,比原来的石油低10-100倍,这使其迁移率非常高,从而导致粘性指法,早期的CO2突破,降低的吹扫效率,注入的二氧化碳高:石油回收利用率高。 CO2的粘度还会促使分层的地层中的一致性控制问题,因为它会促使CO2流入较高渗透率的水淹区域,而剩下的CO2比例要小得多,从而可以使较低渗透率的感兴趣的含油区域流过。在稀释浓度下有效的CO2增稠剂将是一种破坏性技术,因为它不仅可以减轻与不利的迁移率有关的所有问题,而且还消除了使用水交替气工艺来减少相对于CO2的需求。渗透性。在水平,相对均匀的多孔介质中,这些影响尤其明显。但是,从未使用负担得起的小分子来增稠二氧化碳。为了克服这些障碍,我们设计了新颖的小分子,这些分子自组装为增粘的超分子结构。一般而言,我们的设计同时利用了亲二氧化碳分子来增强溶解和空间效应,从而促进线性超分子结构。包括二氧化碳的基团也可促进自组装。这项工作主要集中在基于高度二氧化碳亲和性的有机硅和疏水性氢键合基团(例如芳族酰胺和脲)的分子设计上。对在CO2中分子量变化的未官能化低聚硅氧烷的初始相行为研究作为溶解度极限,因为包含CO2疏水缔合基团将导致溶解度降低(即浊点压力升高) 。在探索各种官能团的同时,我们还证明了分子几何形状对最终溶液性质的影响。具体而言,末端官能化的支链有机硅需要比有机硅尾部核缔合分子高得多的质量浓度,以实现相似的溶液粘度。用具有三个相对短的,支链的,亲CO2的有机硅基官能团官能化的三叉戟获得最有希望的增稠结果,最显着的是苯三((三(三甲基甲硅烷氧基)甲硅烷基)丙基)脲。用二甲基硅氧烷的线性低聚物取代这些支化的(三(三甲基甲硅烷氧基)甲硅烷基)官能团中的一个或两个,会使化合物更易溶于二氧化碳,但增稠效果不佳。然而,在大多数情况下,需要有机助溶剂达到足以使粘度增加的溶解度水平。

著录项

  • 作者

    Lee Jason;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号