首页> 外文OA文献 >Dynamical Systems of the BCM Learning Rule: Emergent Properties and Application to Clustering
【2h】

Dynamical Systems of the BCM Learning Rule: Emergent Properties and Application to Clustering

机译:BCM学习规则的动态系统:新兴属性及其在聚类中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The BCM learning rule has been used extensively to model how neurons in the brain cortex respond to stimulus. One reason for the popularity of the BCM learning rule is that, unlike its predecessors which use static thresholds to modulate neuronal activity, the BCM learning rule incorporates a dynamic threshold that serves as a homeostasis mechanism, thereby providing a larger regime of stability.udThis dissertation explores the properties of the BCM learning rule – as a dynamical system– in different time-scale parametric regimes. The main observation is that, under certain stimulus conditions, when homeostasis is at least as fast as synapse, the dynamical system undergoes bifurcations and may trade stability for oscillations, torus dynamics, and chaos. Analytically, it is shown that the conditions for stability are a function of the homeostasis time-scale parameter and the angle between the stimuli coming into the neuron.udWhen the learning rule achieves stability, the BCM neuron becomes selective. This means that it exhibits high-response activities to certain stimuli and very low-response activities to others. With data points as stimuli, this dissertation shows how this property of the BCM learning rule can be used to perform data clustering analysis. The advantages and limitations of this approach are discussed, in comparison to a few other clustering algorithms.
机译:BCM学习规则已被广泛用于模拟大脑皮层神经元对刺激的反应。 BCM学习规则普及的原因之一是,与其前任使用静态阈值来调节神经元活动的BCM学习规则不同,BCM学习规则并入了动态阈值,该动态阈值充当了稳态机制,从而提供了更大的稳定性。论文探讨了作为动态系统的BCM学习规则在不同时标参数体系中的特性。主要观察结果是,在某些刺激条件下,当稳态至少与突触一样快时,动力学系统会发生分叉,并可能在振荡,圆环动力学和混沌方面保持稳定。从分析上可以看出,稳定性的条件是稳态时标参数和进入神经元的刺激之间的夹角的函数。 ud当学习规则达到稳定性时,BCM神经元变为选择性的。这意味着它对某些刺激表现出高响应性,而对其他刺激则表现出低响应性。本文以数据点为刺激对象,说明如何利用BCM学习规则的这一属性进行数据聚类分析。与其他一些聚类算法相比,讨论了该方法的优点和局限性。

著录项

  • 作者

    Udeigwe Lawrence;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号