首页> 外文OA文献 >COUPLED SURFACE AND GROUNDWATER FLOWS: QUASISTATIC LIMIT AND A SECOND-ORDER, UNCONDITIONALLY STABLE, PARTITIONED METHOD
【2h】

COUPLED SURFACE AND GROUNDWATER FLOWS: QUASISTATIC LIMIT AND A SECOND-ORDER, UNCONDITIONALLY STABLE, PARTITIONED METHOD

机译:耦合的表面和地下水流:准静态极限和二阶,无条件稳定的分区方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis we study the fully evolutionary Stokes-Darcy and Navier-Stokes/Darcy models for the coupling of surface and groundwater flows versus the quasistatic models, in which the groundwater flow is assumed to instantaneously adjust to equilibrium. Further, we develop and analyze an efficient numerical method for the Stokes-Darcy problem that decouples the sub-physics flows, and is 2nd-order convergent, uniformly in the model parameters. ududWe first investigate the linear, fully evolutionary Stokes-Darcy problem and its qua- sistatic approximation, and prove that the solution of the former converges to the solution of the latter as the specific storage parameter converges to zero. The proof reveals that the quasistatic problem predicts the solution accurately only under certain parameter regimes. ududNext, we develop and analyze a partitioned numerical method for the evolutionary Stokes- Darcy problem. We prove that the new method is asymptotically stable, and second-order, uniformly convergent with respect to the model parameters. As a result, it can be used to solve the quasistatic Stokes-Darcy problem. Several numerical tests are performed to support the theoretical efficiency, stability, and convergence properties of the proposed method. ududFinally, we consider the nonlinear Navier-Stokes/Darcy problem and its quasistatic ap- proximation under a modified balance of forces interface condition. We show that the solution of the fully evolutionary problem converges to the quasistatic solution as the specific stor- age converges to zero. To prove convergence in three spatial dimensions, we assume more regularity on the solution, or small data.
机译:在本文中,我们研究了完全演化的Stokes-Darcy模型和Navier-Stokes / Darcy模型,用于模拟地表水与地下水流的耦合与准静态模型之间的关系,在准静态模型中,假定地下水流可以瞬时调整到平衡状态。此外,我们开发和分析了一个有效的数值方法,用于解决Stokes-Darcy问题,该问题使子物理流解耦,并且在模型参数中均匀收敛为二阶。 ud ud我们首先研究线性,完全演化的Stokes-Darcy问题及其准静态逼近,并证明当特定存储参数收敛至零时,前者的解收敛于后者的解。证明表明,准静态问题仅在某些参数范围内才能准确预测解决方案。 ud ud下一步,我们开发和分析演化的Stokes-Darcy问题的分区数值方法。我们证明了该新方法在模型参数方面是渐近稳定的,并且是二阶的,均匀收敛的。结果,它可以用于解决准静态斯托克斯-达西问题。进行了几个数值测试,以支持所提出方法的理论效率,稳定性和收敛性。最后,我们考虑了力界面条件修正后的非线性Navier-Stokes / Darcy问题及其准静态逼近。我们证明,随着特定存储收敛到零,完全演化问题的解收敛到准静态解。为了证明在三个空间维度上的收敛性,我们假设解或较小的数据有更多规律性。

著录项

  • 作者

    Moraiti Marina;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号