首页> 外文OA文献 >Suivi d'objets d'intérêt dans une séquence d`images : des points saillants aux mesures statistiques
【2h】

Suivi d'objets d'intérêt dans une séquence d`images : des points saillants aux mesures statistiques

机译:在图像序列中跟踪感兴趣的对象:从高光到统计量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of object tracking is a problem arising in domains such as computer vision (video surveillance for instance) and cinematographic post-production (special effects). There are two major classes of solution to this problem: region of interest tracking, which indicates a coarse tracking, and space-time segmentation, which corresponds to a precise tracking of the region of interest's contour. In both cases, the region of interest must be selected beforehand on the first, and possibly on the last image of the video sequence. In this thesis, we propose two tracking methods (one of each type). We propose also a fast implementation of an existing tracking method on Graphics Processing Unit (GPU). The first method is based on the analysis of temporal trajectories of salient points and provides a region of interest tracking. Salient points (typically of point of strong curvature of the isointensity lines) are detected in all the images of the sequence. The trajectories are built by matching salient points of consecutive images whose neighbourhoods are coherent. Our first contribution consists in the analysis of the trajectories on a group of pictures, which improves the motion estimation quality. Moreover, we use a space-time weighting for each trajectory which makes it possible to add a temporal constraint on the movement while taking into account the local geometrical deformations of the object ignored by a global motion model. The second method performs a space-time segmentation. The object contour motion is estimated using the information contained in an outer-layer centered on the object contour. Our first contribution is the use of this outer-layer which contains information about both the background and the object in a local context. Moreover, the matching using a statistical similarity measure (residual entropy) allows to improve the tracking while facilitating the choice of the optimal size of the crown. Finally, we propose a fast implementation of an existing tracking method of region of interest. This method relies on the use of a statistical similarity measure: the Kullback-Leibler divergence. This divergence can be estimated in a high dimension space using k-th nearest neighbor distance. These calculations being computationally very expensive, we propose a parallel implementation of the exhaustive search of the k-th nearest neighbors using GPU programming (via the programming interface NVIDIA CUDA). We show that this implementation speeds the tracking process up to a factor 15 compared to a classical implementation of this search using data structuring methods.
机译:对象跟踪的问题是在诸如计算机视觉(例如视频监视)和电影摄影后期制作(特殊效果)等领域中出现的问题。解决此问题的方法主要有两类:关注区域跟踪(指示粗略跟踪)和空时分割(对应于对关注区域轮廓的精确跟踪)。在两种情况下,都必须事先在视频序列的第一个图像上,也可能在最后一个图像上选择感兴趣的区域。在本文中,我们提出了两种跟踪方法(每种类型的一种)。我们还建议在图形处理单元(GPU)上快速实现现有跟踪方法。第一种方法基于对显着点的时间轨迹的分析,并提供关注区域的跟踪。在序列的所有图像中都检测到显着点(通常是等强度线的强曲率点)。通过匹配邻域相干的连续图像的显着点来构建轨迹。我们的第一项贡献在于对一组图片上的轨迹进行分析,从而提高了运动估计质量。此外,我们对每个轨迹使用时空加权,这使得可以在考虑到全局运动模型忽略的对象的局部几何变形的同时,对运动添加时间限制。第二种方法执行时空分割。使用包含在以对象轮廓为中心的外层中的信息来估计对象轮廓运动。我们的第一个贡献是使用了包含有关本地背景中的背景和对象的信息的外层。此外,使用统计相似性度量(残差熵)进行的匹配可以改善跟踪效果,同时便于选择表冠的最佳尺寸。最后,我们提出了一种快速实现的现有感兴趣区域跟踪方法。这种方法依赖于统计相似性度量的使用:Kullback-Leibler散度。可以使用第k个最近邻居距离在高维空间中估计此差异。这些计算在计算上非常昂贵,我们建议使用GPU编程(通过编程接口NVIDIA CUDA)并行执行第k个最近邻居的详尽搜索。我们证明,与使用数据结构化方法进行此搜索的经典实现相比,该实现将跟踪过程的速度提高了15倍。

著录项

  • 作者

    Garcia Vincent;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号