首页> 外文OA文献 >Analysis of the effects of conical indentation variables on the indentation response of elastic-plastic materials through factorial design of experiment
【2h】

Analysis of the effects of conical indentation variables on the indentation response of elastic-plastic materials through factorial design of experiment

机译:通过实验的因子设计分析锥形压痕变量对弹塑性材料压痕响应的影响

摘要

In this work, the effects of conical indentation variables on the load-depth indentation curves were analyzed using finite element modeling and dimensional analysis. A factorial design 2(6) was used with the aim of quantifying the effects of the mechanical properties of the indented material and of the indenter geometry. Analysis was based on the input variables Y/E, R/h(max), n, theta, E, and h(max). The dimensional variables E and h(max) were used such that each value of dimensionless Y/E was obtained with two different values of E and each value of dimensionless R/h(max) was obtained with two different h(max) values. A set of dimensionless functions was defined to analyze the effect of the input variables: Pi(1) = P(1)/Eh(2), Pi(2) = h(c)/h, Pi(3) = H/Y, Pi(4) = S/Eh(max), Pi(6) = h(max)/h(f) and Pi(7) = W(P)/W(T). These six functions were found to depend only on the dimensionless variables studied (Y/E, R/h(max), n, theta). Another dimension less function, Pi(5) = beta, was not well defined for most of the dimensionless variables and the only variable that provided a significant effect on beta was theta. However, beta showed a strong dependence on the fraction of the data selected to fit the unloading curve, which means that beta is especially Susceptible to the error in the Calculation of the initial unloading slope.
机译:在这项工作中,使用有限元建模和尺寸分析来分析圆锥形压痕变量对载荷深度压痕曲线的影响。使用阶乘设计2(6)的目的是量化压痕材料的机械性能和压头几何形状的影响。分析基于输入变量Y / E,R / h(max),n,θ,E和h(max)。使用尺寸变量E和h(max),以使无量纲Y / E的每个值具有两个不同的E值,而无量纲R / h(max)的每个值具有两个不同的h(max)值。定义了一组无量纲函数来分析输入变量的影响:Pi(1)= P(1)/ Eh(2),Pi(2)= h(c)/ h,Pi(3)= H / Y,Pi(4)= S / Eh(max),Pi(6)= h(max)/ h(f),Pi(7)= W(P)/ W(T)。发现这六个函数仅取决于所研究的无量纲变量(Y / E,R / h(max),n,θ)。对于大多数无量纲变量,没有很好地定义另一个无量纲函数Pi(5)= beta,唯一对β产生显着影响的变量是theta。但是,β显示出强烈依赖于为拟合卸载曲线而选择的数据比例,这意味着β尤其容易受到初始卸载斜率计算中的误差的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号