首页> 外文OA文献 >Local learning for multi-layer, multi-component predictive system.
【2h】

Local learning for multi-layer, multi-component predictive system.

机译:多层,多成分预测系统的本地学习。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study introduces a new multi-layer multi-component ensemble. The components of this ensemble are trained locally on subsets of features for disjoint sets of data. The data instances are assigned to local regions using the similarity of their features pairwise squared correlation. Many ensemble methods encourage diversity among their base predictors by training them on different subsets of data or different subsets of features. In the proposed architecture the local regions contain disjoint sets of data and for this data only the most similar features are selected. The pairwise squared correlations of the features are used to weight the predictions of the ensemble's models. The proposed architecture has been tested on a number of data sets and its performance was compared to five benchmark algorithms. The results showed that the testing accuracy of the developed architecture is comparable to the rotation forest and is better than the other benchmark algorithms.
机译:这项研究介绍了一种新的多层多组件集成。该集成的组件在不相交的数据集的特征子集中进行本地训练。数据实例使用其特征成对平方相关的相似性分配给局部区域。许多集成方法通过在数据的不同子集或要素的不同子集上对基本预测变量进行训练来鼓励其多样性。在所提出的架构中,局部区域包含不相交的数据集,并且对于该数据,仅选择最相似的特征。特征的成对平方的相关性用于加权整体模型的预测。所提出的体系结构已在许多数据集上进行了测试,并将其性能与五种基准算法进行了比较。结果表明,所开发架构的测试精度与旋转森林相当,并且优于其他基准算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号