首页> 外文OA文献 >Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches
【2h】

Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches

机译:小世界和随机网络上的欠采样关键分支过程无法重现峰值雪崩的统计信息

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality inthe brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2.Models at criticality have been employed to mimic avalanche propagation and explain the statistics observedexperimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models:undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronaltissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models withthree different topologies (two-dimensional, small-world and random network) and three different dynamical regimes(subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing thepower laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of theundersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems canrecover the general characteristics of the fully sampled version, provided that enough neurons are measured.Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network isinsensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanchesrecorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not holdfor spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproducethe statistics of spike avalanches.
机译:实验上获得的神经元雪崩的幂律大小分布是大脑中临界状态的重要证据。关键分支过程具有相同的指数t〜3 = 2的事实为这一证据提供了支持。关键模型已用于模拟雪崩传播并通过实验解释了统计数据。但是,在模型中,神经元记录的关键方面几乎被完全忽略了:欠采样。虽然在典型的多电极阵列中记录了数百个神经元,但在神经组织的同一区域中可以找到数万个神经元。在这里,我们研究了在具有三种不同拓扑(二维,小世界和随机网络)和三种不同动态机制(亚临界,临界和超临界)的模型中欠采样的后果。我们发现欠采样会修改雪崩大小分布,从而消除关键系统中观察到的功率定律。亚临界系统的分布也被修改,但是欠采样分布的形状与完全采样系统的分布更相似。欠采样的超临界系统可以恢复完整采样版本的一般特征,只要可以测量到足够的神经元即可。二维和小世界网络中的欠采样会产生类似的效果,而随机网络由于缺少孔而对采样密度不敏感定义的邻居。我们推测,由于该信号的性质,从局部场电势记录的神经元雪崩可避免欠采样效应,但对于尖峰雪崩却不成立。我们得出的结论是,在这些拓扑中欠采样的类似于分支过程的模型无法重现尖峰雪崩的统计信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号