首页> 外文OA文献 >Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst
【2h】

Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst

机译:在LaFeO3钙钛矿催化剂上通过水蒸气变换和氧化还原循环过程进行甲烷生产,该过程是通过晶格氧进行甲烷部分氧化的甲烷

摘要

A redox cycle process, in which CH4 and air are periodically brought into contact with a solid oxide packed in a fixed-bed reactor, combined with the water-gas shift (WGS) reaction, is proposed for hydrogen production. The sole oxidant for partial oxidation of methane (POM) is found to be lattice oxygen instead of gaseous oxygen. A perovskite-type LaFeO3 oxide was prepared by a sol-gel method and employed as an oxygen storage material in this process. The results indicate that, under appropriate reaction conditions, methane can be oxidized to CO and H-2 by the lattice oxygen of LaFeO3 perovskite oxide with a selectivity higher than 95% and the consumed lattice oxygen can be replenished in a reoxidation procedure by a redox operation. It is suggested that the POM to H-2/CO by using the lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable. The LaFeO3 perovskite oxide maintained relatively high catalytic activity and structural stability, while the carbonaceous deposits, which come from the dissociation of CH4 in the pulse reaction, occurred due to the low migration rate of lattice oxygen from the bulk toward the surface. A new dissociation-oxidation mechanism for this POM without gaseous oxygen is proposed based on the transient responses of the products checked at different surface states via both pulse reaction and switch reaction over the LaFeO3 catalyst. In the absence of gaseous-phase oxygen, the rate-determining step of methane conversion is the migration rate of lattice oxygen, but the process can be carried out in optimized cycles. The product distribution for POM over LaFeO3 catalyst in the absence of gaseous oxygen was determined by the concentration of surface oxygen, which is relevant with the migration rate of lattice oxygen from the bulk toward the surface. This process of hydrogen production via selective oxidation of methane by lattice oxygen is better in avoiding the deep oxidation (to CO2) and enhancing the selectivity. Therefore, this new route is superior to general POM in stability (resistance to carbonaceous deposition), safety (effectively avoiding accidental explosion), ease of operation and optimization, and low cost (making use of air not oxygen).
机译:提出了一种氧化还原循环工艺,其中将CH4和空气与填充在固定床反应器中的固体氧化物定期接触,并结合水煤气变换(WGS)反应,用于制氢。发现用于甲烷部分氧化的唯一氧化剂(POM)是晶格氧而不是气态氧。钙钛矿型LaFeO3氧化物通过溶胶-凝胶法制备,并在该过程中用作储氧材料。结果表明,在适当的反应条件下,LaFeO3钙钛矿氧化物的晶格氧可以将甲烷氧化为CO和H-2,选择性高于95%,并且在氧化过程中可以通过氧化还原来补充消耗的晶格氧。操作。建议使用储氧材料的晶格氧代替气态氧将POM制为H-2 / CO应该是适用的。 LaFeO3钙钛矿氧化物保持相对较高的催化活性和结构稳定性,而由于脉冲反应中CH4的分解而产生的碳质沉积是由于晶格氧从本体向表面的低迁移速率而发生的。基于在LaFeO3催化剂上通过脉冲反应和转换反应在不同表面状态下检测到的产物的瞬态响应,提出了一种不含气态氧的POM的新解离氧化机理。在没有气相氧气的情况下,甲烷转化的决定速率的步骤是晶格氧气的迁移速率,但该过程可以优化的周期进行。在不存在气态氧的情况下,在LaFeO3催化剂上POM的产物分布取决于表面氧的浓度,该浓度与晶格氧从本体向表面的迁移速率有关。通过晶格氧选择性地甲烷氧化甲烷生产氢的过程,可更好地避免深度氧化(转化为CO2)并提高选择性。因此,这种新路线在稳定性(抗碳沉积性),安全性(有效避免意外爆炸),易于操作和优化以及低成本(使用空气而不是氧气)方面优于一般的POM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号