...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Hydrogen Production from a Combination of the Water-Gas Shift and Redox Cycle Process of Methane Partial Oxidation via Lattice Oxygen over LaFeO_3 Perovskite Catalyst
【24h】

Hydrogen Production from a Combination of the Water-Gas Shift and Redox Cycle Process of Methane Partial Oxidation via Lattice Oxygen over LaFeO_3 Perovskite Catalyst

机译:LaFeO_3钙钛矿型催化剂上的水煤气变换和格子氧化法甲烷部分氧化的氧化还原循环过程相结合而制氢

获取原文
获取原文并翻译 | 示例

摘要

A redox cycle process,in which CH_4 and air are periodically brought into contact with a solid oxide packed in a fixed-bed reactor,combined with the water-gas shift (WGS) reaction,is proposed for hydrogen production.The sole oxidant for partial oxidation of methane (POM) is found to be lattice oxygen instead of gaseous oxygen.A perovskite-type LaFeO_3 oxide was prepared by a sol-gel method and employed as an oxygen storage material in this process.The results indicate that,under appropriate reaction conditions,methane can be oxidized to CO and H_2 by the lattice oxygen of LaFeO_3 perovskite oxide with a selectivity higher than 95% and the consumed lattice oxygen can be replenished in a reoxidation procedure by a redox operation.It is suggested that the POM to H_2/CO by using the lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.The LaFeO_3 perovskite oxide maintained relatively high catalytic activity and structural stability,while the carbonaceous deposits,which come from the dissociation of CH_4 in the pulse reaction,occurred due to the low migration rate of lattice oxygen from the bulk toward the surface.A new dissociation-oxidation mechanism for this POM without gaseous oxygen is proposed based on the transient responses of the products checked at different surface states via both pulse reaction and switch reaction over the LaFeO_3 catalyst.In the absence of gaseous-phase oxygen,the rate-determining step of methane conversion is the migration rate of lattice oxygen,but the process can be carried out in optimized cycles.The product distribution for POM over LaFeO_3 catalyst in the absence of gaseous oxygen was determined by the concentration of surface oxygen,which is relevant with the migration rate of lattice oxygen from the bulk toward the surface.This process of hydrogen production via selective oxidation of methane by lattice oxygen is better in avoiding the deep oxidation (to CO_2) and enhancing the selectivity.Therefore,this new route is superior to general POM in stability (resistance to carbonaceous deposition),safety (effectively avoiding accidental explosion),ease of operation and optimization,and low cost (making use of air not oxygen).
机译:提出了一种氧化还原循环工艺,其中CH_4和空气定期与填充在固定床反应器中的固体氧化物接触,并结合水煤气变换(WGS)反应,用于制氢。部分氧化剂的唯一氧化剂发现甲烷氧化是晶格氧而不是气态氧。采用溶胶-凝胶法制备了钙钛矿型LaFeO_3氧化物,并在该过程中用作储氧材料。在此条件下,LaFeO_3钙钛矿氧化物的晶格氧可以将甲烷氧化为CO和H_2,选择性高于95%,并且可以通过氧化还原操作在再氧化过程中补充所消耗的晶格氧。通过使用储氧材料的晶格氧代替气态氧/ CO可能是适用的。LaFeO_3钙钛矿氧化物保持相对较高的催化活性和结构稳定性,而由于晶格氧从主体向表面的迁移速率低,发生了脉冲反应中CH_4的解离而产生的碳质沉积物。为此提出了一种新的无气态氧的POM解离氧化机理。在LaFeO_3催化剂上通过脉冲反应和开关反应在不同表面状态下检测到的产物的瞬态响应。在没有气相氧的情况下,甲烷转化的决定速率的步骤是晶格氧的迁移速率,但是该过程在不存在气态氧的情况下,LaFeO_3催化剂上POM的产物分布取决于表面氧的浓度,该浓度与晶格氧从本体向表面的迁移速率有关。通过晶格氧选择性氧化甲烷来生产氢的方法可以更好地避免深度氧化(转化为CO_2)并提高选择性因此,这条新路线在稳定性(抗碳沉积性),安全性(有效避免意外爆炸),易于操作和优化以及低成本(使用空气而不是氧气)方面优于一般的POM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号