首页> 外文OA文献 >Long-Term Stability Estimates and Existence of a Global Attractor in a Finite Element Approximation of the Navier–Stokes Equations with Numerical Subgrid Scale Modeling
【2h】

Long-Term Stability Estimates and Existence of a Global Attractor in a Finite Element Approximation of the Navier–Stokes Equations with Numerical Subgrid Scale Modeling

机译:数值子网格规模建模的Navier–Stokes方程有限元逼近中的长期稳定性估计和整体吸引子的存在

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Variational multiscale methods lead to stable finite element approximations of theNavier–Stokes equations, dealing with both the indefinite nature of the system (pressure stability) andthe velocity stability loss for high Reynolds numbers. These methods enrich the Galerkin formulationwith a subgrid component that is modeled. In fact, the effect of the subgrid scale on the capturedscales has been proved to dissipate the proper amount of energy needed to approximate the correctenergy spectrum. Thus, they also act as effective large-eddy simulation turbulence models and allowone to compute flows without the need to capture all the scales in the system. In this article, weconsider a dynamic subgrid model that enforces the subgrid component to be orthogonal to thefinite element space in the L2 sense. We analyze the long-term behavior of the algorithm, provingthe existence of appropriate absorbing sets and a compact global attractor. The improvementswith respect to a finite element Galerkin approximation are the long-term estimates for the subgridcomponent, which are translated to effective pressure and velocity stability. Thus, the stabilizationintroduced by the subgrid model into the finite element problem does not deteriorate for infinite timeintervals of computation.
机译:变分多尺度方法导致了Navier–Stokes方程的稳定有限元逼近,既处理了系统的不确定性(压力稳定性)又针​​对了高雷诺数的速度稳定性损失。这些方法通过建模的子网格组件丰富了Galerkin公式。实际上,已经证明了亚网格规模对捕获规模的影响可以消散近似正确的能量谱所需的适当能量。因此,它们还可以用作有效的大涡流模拟湍流模型,并允许在无需捕获系统中所有比例的情况下计算流量。在本文中,我们考虑一个动态子网格模型,该模型将子网格组件强制为与L2意义上的有限元素空间正交。我们分析了算法的长期行为,证明了存在适当的吸收集和紧凑的全局吸引子。有限元Galerkin近似的改进是对子网格分量的长期估算,这些估算转化为有效的压力和速度稳定性。因此,在无限的计算时间间隔内,子网格模型引入的有限元问题的稳定性不会降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号