首页> 外文OA文献 >dOFV distributions : A New Diagnostic For The Adequacy Of Parameter Uncertainty In Nonlinear Mixed-Effects Models Applied To The Bootstrap
【2h】

dOFV distributions : A New Diagnostic For The Adequacy Of Parameter Uncertainty In Nonlinear Mixed-Effects Models Applied To The Bootstrap

机译:dOFV分布:应用于Bootstrap的非线性混合效应模型中参数不确定性充分性的新诊断方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Knowledge of the uncertainty in model parameters is essential for decision-making in drug development. Contrarily to other aspects of nonlinear mixed effects models (NLMEM), scrutiny towards assumptions around parameter uncertainty is low, and no diagnostic exists to judge whether the estimated uncertainty is appropriate. This work aims at introducing a diagnostic capable of assessing the appropriateness of a given parameter uncertainty distribution. The new diagnostic was applied to case bootstrap examples in order to investigate for which dataset sizes case bootstrap is appropriate for NLMEM. The proposed diagnostic is a plot comparing the distribution of differences in objective function values (dOFV) of the proposed uncertainty distribution to a theoretical Chi square distribution with degrees of freedom equal to the number of estimated model parameters. The uncertainty distribution was deemed appropriate if its dOFV distribution was overlaid with or below the theoretical distribution. The diagnostic was applied to the bootstrap of two real data and two simulated data examples, featuring pharmacokinetic and pharmacodynamic models and datasets of 20-200 individuals with between 2 and 5 observations on average per individual. In the real data examples, the diagnostic indicated that case bootstrap was unsuitable for NLMEM analyses with around 70 individuals. A measure of parameter-specific "effective" sample size was proposed as a potentially better indicator of bootstrap adequacy than overall sample size. In the simulation examples, bootstrap confidence intervals were shown to underestimate inter-individual variability at low sample sizes. The proposed diagnostic proved a relevant tool for assessing the appropriateness of a given parameter uncertainty distribution and as such it should be routinely used.
机译:模型参数不确定性的知识对于药物开发中的决策至关重要。与非线性混合效应模型(NLMEM)的其他方面相反,对参数不确定性周围假设的审查很少,并且不存在诊断方法来判断估计的不确定性是否合适。这项工作旨在介绍一种能够评估给定参数不确定性分布是否适当的诊断程序。新的诊断程序应用于案例引导程序示例,以研究案例引导程序适合NLMEM的数据集大小。提出的诊断方法是将提议的不确定性分布的目标函数值(dOFV)的差异分布与自由度等于估计的模型参数数量的理论卡方分布进行比较的图表。如果不确定性分布的dOFV分布覆盖理论分布或低于理论分布,则认为该不确定性分布是适当的。该诊断程序应用于两个真实数据和两个模拟数据示例的自举,这些示例具有药代动力学和药效学模型以及20至200个个体的数据集,每个个体平均观察2至5个观察值。在实际数据示例中,诊断表明案例自举不适合大约70个人的NLMEM分析。提出了一种针对特定参数的“有效”样本量的度量,作为比整个样本量更好的引导程序充足性指标。在模拟示例中,自举置信区间显示出在低样本量时低估了个体间的变异性。所提出的诊断方法证明是一种用于评估给定参数不确定性分布的适当性的相关工具,因此应常规使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号