首页> 外文OA文献 >Specimen- and grain-size dependence of compression deformation behavior in nanocrystalline copper
【2h】

Specimen- and grain-size dependence of compression deformation behavior in nanocrystalline copper

机译:纳米晶铜压缩变形行为的标本和晶粒尺寸依赖性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The compression deformation behavior of electrodeposited nanocrystalline copper pillars with average grain sizes (d) of 360, 100, and 34 nm has been investigated as a function of specimen size (D). The yield stress for nanocrystalline pillars with d = 360 and 100 nm does not depend on specimen size, exhibiting essentially the bulk yield stress until the specimen size is reduced down to the critical values ((D/d)∗ = 35 and 85), below which the yield stress decreases with the decrease in specimen size. In contrast, the yield stress for nanocrystalline pillars with d = 34 nm does not depend much on specimen size, exhibiting the bulk yield stress value for all specimen sizes investigated. The dominant deformation mechanism changes from dislocation glide for pillars with d = 360 and 100 nm to grain boundary diffusional creep for pillars with d = 34 nm. Grain-size induced softening occurs for pillars with d = 34 nm being consistent with the occurrence of change in deformation mechanisms, whereas the bulk yield stress for pillars with d = 360 and 100 nm increases with the decrease in grain size according to the classical Hall–Petch relationship. The critical (D/d)∗ values determined for nanocrystalline Cu pillars with d = 360 and 100 nm increases with the decrease in grain size so as to conform to the same power law scaling obtained for coarse-grained Cu polycrystals. This is the first indication that the specimen size-induced softening extends from micrometer to nanometer scales as far as the dominant deformation mechanism is dislocation glide. The considerably large critical (D/d)∗ values determined for nanocrystalline Cu pillars with d = 360 and 100 nm are discussed in terms of strain continuity among neighboring grains and the generation of geometrically necessary dislocations to maintain strain continuity at the grain boundaries.
机译:研究了平均粒径(d)为360、100和34 nm的电沉积纳米晶铜柱的压缩变形行为,其与试样尺寸(D)的关系。 d = 360和100 nm的纳米晶柱的屈服应力与样品尺寸无关,在样品尺寸减小到临界值之前,基本上表现出整体屈服应力((D / d)∗ = 35和85),低于此值时,屈服应力随试样尺寸的减小而减小。相比之下,d = 34 nm的纳米晶柱的屈服应力在很大程度上不取决于样品尺寸,在所有研究的样品尺寸中均显示出整体屈服应力值。主导变形机制从d = 360和100 nm的柱的位错滑移变为d = 34 nm的柱的晶界扩散蠕变。 d = 34 nm的柱发生了晶粒尺寸的诱导软化,这与变形机制的变化一致,而d = 360和100 nm的柱的整体屈服应力随晶粒尺寸的减小而增加。 –获取关系。对于d = 360和100 nm的纳米晶Cu柱,确定的临界(D / d)*值随晶粒尺寸的减小而增加,从而符合对粗晶粒Cu多晶获得的幂律定标。这是第一个迹象表明,只要占主导地位的变形机理是位错滑移,样品尺寸引起的软化就会从微米级扩展到纳米级。根据相邻晶粒间的应变连续性以及在晶界处保持应变连续性的几何必要位错的产生,讨论了为d = 360和100 nm的纳米晶Cu柱确定的相当大的临界(D / d)*值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号