首页> 外文OA文献 >Mining significant substructure pairs for interpreting polypharmacology in drug-target network.
【2h】

Mining significant substructure pairs for interpreting polypharmacology in drug-target network.

机译:挖掘重要的子结构对,以解释目标药物网络中的多药理学。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A current key feature in drug-target network is that drugs often bind to multiple targets, known as polypharmacology or drug promiscuity. Recent literature has indicated that relatively small fragments in both drugs and targets are crucial in forming polypharmacology. We hypothesize that principles behind polypharmacology are embedded in paired fragments in molecular graphs and amino acid sequences of drug-target interactions. We developed a fast, scalable algorithm for mining significantly co-occurring subgraph-subsequence pairs from drug-target interactions. A noteworthy feature of our approach is to capture significant paired patterns of subgraph-subsequence, while patterns of either drugs or targets only have been considered in the literature so far. Significant substructure pairs allow the grouping of drug-target interactions into clusters, covering approximately 75% of interactions containing approved drugs. These clusters were highly exclusive to each other, being statistically significant and logically implying that each cluster corresponds to a distinguished type of polypharmacology. These exclusive clusters cannot be easily obtained by using either drug or target information only but are naturally found by highlighting significant substructure pairs in drug-target interactions. These results confirm the effectiveness of our method for interpreting polypharmacology in drug-target network.
机译:药物靶标网络中的当前关键特征是药物经常与多个靶标结合,称为多药理学或药物滥交。最近的文献表明,药物和靶标中相对较小的片段对于形成多药理学至关重要。我们假设多药理学背后的原理嵌入分子图和药物-靶标相互作用的氨基酸序列中的配对片段中。我们开发了一种快速,可扩展的算法,用于从药物-靶标相互作用中挖掘大量共现的子图-子序列对。我们方法的一个值得注意的特征是捕获子图子序列的重要配对模式,而到目前为止,文献中仅考虑了药物或靶标的模式。显着的子结构对可将药物-靶标相互作用分组为簇,覆盖了包含已批准药物的相互作用的约75%。这些聚类彼此高度排斥,具有统计学意义,并且在逻辑上暗示每个聚类对应于一种独特的多元药理学类型。这些排他性簇不能仅通过使用药物或靶标信息轻易获得,而可以通过在药物-靶标相互作用中突出显示重要的亚结构对而自然找到。这些结果证实了我们在药物靶标网络中解释多药理学方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号