首页> 外文OA文献 >Learning Preferences with Kernel-Based Methods
【2h】

Learning Preferences with Kernel-Based Methods

机译:使用基于内核的方法学习偏好

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback.In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
机译:偏好关系的学习最近在机器学习社区中受到了极大的关注。它与分类和回归分析密切相关,可以简化为这些任务。但是,偏好学习涉及预测数据点的顺序,而不是预测回归中的单个数值或预测分类中的类标签。因此,在单独的框架内研究偏好关系不仅有助于更好地从理论上理解问题,而且可以促进任务高效算法的发展。偏好学习在诸如信息检索,生物信息学,自然语言处理等领域中具有许多应用。例如,在搜索引擎中经常使用学习排名的算法来对查询所检索的文档进行排序。偏好学习方法也已应用于协作过滤问题,以从大量用户生成的反馈中预测单个客户的选择。本文提出了几种学习偏好关系的算法。这些算法源于规则化的最小二乘法的稳固且强大的类别,并具有许多吸引人的计算特性。为了提高我们方法的性能,我们引入了几种非线性核函数。因此,本论文的贡献是双重的:用于利用各种非矢量数据表示的结构化数据的内核函数,以及适用于不同任务的偏好学习算法,即有效学习偏好关系,大量学习训练数据和半监督偏好学习。提出的基于内核的算法和内核应用于自然语言处理中的解析排名任务,信息检索中的文档排名以及生物信息学领域的远程同源性检测。当训练集的大小很大时,基于内核的排名算法的训练可能是不可行的。通过提出一种偏好学习算法解决了该问题,该算法的计算复杂度与训练数据点的数量成线性比例。我们还介绍了该算法的稀疏近似,可以使用大量数据对其进行有效训练。对于少量标记数据但大量未标记数据可用的情况,我们提出了一种共正规化的偏好学习算法。总而言之,本文提出的方法不仅解决了算法的有效训练问题,而且还解决了快速正则化参数选择,多输出预测和交叉验证的问题。此外,提出的算法在考虑的许多偏好学习任务中可显着提高性能。

著录项

  • 作者

    Tsivtsivadze Evgeni;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号