The non-ideal detonation performance of two commercial explosives is determined using the DeNE and JWL++ codes. These two codes differ in that DeNE is based on a pseudo-one-dimensional theory which is valid on the central stream-tube and capable of predicting the non-ideal detonation characteristics of commercial explosives as a function of the explosive type, rock properties and blasthole diameter. On the other hand, JWL++ is a hydrocode running in a 2-D arbitrary Lagrangian-Eulerian code with CALE-like properties and can determine the flow properties in all stream lines within the reaction zone. The key flow properties (detonation velocity, pressure, specific volume, extent of reaction and reaction zone length) at the sonic locus on the charge axis have been compared. In general, it is shown that the flow parameters determined using both codes agree well. The pressure contours determined using the JWL++ are analysed in detail for two explosives at 165 mm blastholes confined in limestone and kimberlite with a view to further investigate the explosive/rock interface. The DeNE and JWL++ codes have been validated using the measured in-hole detonation velocity data.
展开▼