首页> 外文OA文献 >Reconfigurable computing for Monte Carlo simulations: results and prospects of the Janus project
【2h】

Reconfigurable computing for Monte Carlo simulations: results and prospects of the Janus project

机译:蒙特卡洛模拟的可重构计算:Janus项目的结果和前景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
机译:我们将描述Janus,这是一种基于FPGA的大规模并行计算机,已针对旋转玻璃的仿真进行了优化,这是玻璃材料性能的理论模型。 FPGA(与GPU或多核处理器相比)为大规模并行计算提供了一种补充方法。特别是,我们的模型问题是用二进制变量来表示的,浮点运算可以(几乎)完全避免。 FPGA体系结构使我们可以运行许多独立的线程,而几乎没有存储器访问延迟,因此每个周期最多更新1024次旋转。我们详细描述了Janus,并总结了该机器运行四年后获得的物理结果。我们讨论了两种类型的物理应用程序:在大型系统上的长时间模拟(试图模拟并提供对实验非平衡动力学的理解),以及使用人工平行回火动力学的低温平衡模拟。我们的非平衡模拟的时间范围跨度为11个数量级(从皮秒到十分之一秒)。另一方面,由于达到的低温以及使我们达到平衡的大型系统,我们的平衡模拟是空前的。从两组模拟的详细比较中得出了有限时间缩放的ansatz。 Janus使执行旋转玻璃仿真成为可能,而在更传统的体系结构上则需要数十年的时间。本文以最新技术为基础,评估了Janus架构未来可能的版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号