首页> 外文OA文献 >Riemannian Ricci curvature lower bounds in metric measure spaces with sigma-finite measure
【2h】

Riemannian Ricci curvature lower bounds in metric measure spaces with sigma-finite measure

机译:具有sigma有限度量的度量度量空间中的黎曼Ricci曲率下界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In prior work [4] of the first two authors with Savare', a new Riemannian notion of lower bound for Ricci curvature in the class of metric measure spaces $(X,d,m)$ was introduced, and the corresponding class of spaces denoted by $RCD(K,infty)$. This notion relates the $CD(K,N)$ theory of Sturm and Lott-Villani, in the case $N=infty$, to the Bakry-Emery approach. In [4] the $RCD(K,infty)$ property is defined in three equivalent ways and several properties of $RCD(K,infty)$ spaces, including the regularization properties of the heat flow, the connections with the theory of Dirichlet forms and the stability under tensor products, are provided. In [4] only finite reference measures m have been considered. The goal of this paper is twofold: on one side we extend these results to general σ-finite spaces, on the other we remove a technical assumption appeared in [4] concerning a strengthening of the $CD(K,infty)$ condition. This more general class of spaces includes Euclidean spaces endowed with Lebesgue measure, complete noncompact Riemannian manifolds with bounded geometry and the pointed metric measure limits of manifolds with lower Ricci curvature bounds.
机译:在Savare'的前两位作者的先前工作[4]中,引入了度量度量空间类$(X,d,m)$中Ricci曲率下界的新黎曼概念,并引入了相应的空间类用$ RCD(K, infty)$表示。这个概念将Sturm和Lott-Villani的$ CD(K,N)$理论(在$ N = infty $的情况下)与Bakry-Emery方法联系起来。在[4]中,$ RCD(K, infty)$属性以三种等效方式定义,并且$ RCD(K, infty)$空间具有多个属性,包括热流的正则化属性,与理论的联系提供了Dirichlet形式的稳定性以及在张量积下的稳定性。在[4]中,仅考虑了有限的参考度量m。本文的目标是双重的:一方面,我们将这些结果扩展到一般的σ有限空间,另一方面,我们删除了[4]中出现的关于加强$ CD(K, infty)$条件的技术假设。 。这种更一般的空间类别包括具有Lebesgue测度的欧几里得空间,具有定界几何形状的完全非紧黎曼流形和具有较低Ricci曲率边界的流形的尖度量度极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号