首页> 外文OA文献 >A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity
【2h】

A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity

机译:准周期图中不变托勒及其晶须计算的参数化方法:双曲分解的探索和机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.
机译:在前两篇论文中[J.微分方程,228(2006),pp.530579;离散连续。达因Syst。老师B,6(2006),pp。1261 1300],我们开发了快速算法来计算准周期系统中的不变托里,并建立了评估其准确性的定理。在本文中,我们研究了实现这些算法的结果,并研究了它们在实际实现中的性能。更重要的是,我们注意到,由于算法的速度以及有关算法可靠性的理论发展,我们可以自信地计算出不易变形的物体,它们的双曲性质非常接近。这使我们能够确定双曲丧失的机制并测量其一些定量规律。我们发现某些系统失去了双曲性,因为稳定和不稳定的束彼此接近,但Lyapunov乘数仍然远离1。我们从经验上发现,接近分解,不变束与Lyapunov乘数之间的距离是自然的双曲依赖于参数,幂定律具有通用指数。我们也观察到,即使[J.微分方程,228(2006),第530-579页]仅针对双曲花托而开发,该算法也适用于哈密顿系统中的椭圆花托。我们可以继续这些花托,还可以计算共振时的一些分叉,这可能导致存在不可定向束的双曲花托。我们计算与不可定向束相切的流形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号