首页> 外文OA文献 >Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models
【2h】

Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models

机译:面部特征判断的自动预测:外观与结构模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.
机译:评估其他人的人格特征在人际关系中起着至关重要的作用,这是心理学和交互式计算机系统等不同领域研究的重点。在心理学中,面部感知已被认为是该评估系统的关键组成部分。多项研究表明,观察者使用面部信息来推断人格特征。交互式计算机系统正在尝试利用这些发现,并将其应用于增加交互的自然方面并改善交互式计算机系统的性能。在这里,我们通过实验测试是否可以通过使用面部的完整外观信息来进行面部特征判断(例如主导地位)的自动预测,以及简化表示其结构是否足够。我们评估两种单独的方法:使用面部外观信息的整体表示模型和根据面部显着点之间的关系构建的结构模型。最先进的机器学习方法应用于:a)从训练数据中得出面部特征判断模型,以及b)预测任何面部的面部特征值。此外,我们解决了在预测面部特征的面部点之间是否存在特定的结构关系的问题。在一组标记数据(9个不同的性格评估)和分类规则(4个规则)上的实验结果表明:a)可以通过整体和结构方法来学习面部特征的预测; b)通过某些类型的面部外观整体描述可获得最可靠的面部特征判断预测; c)对于某些特征,例如吸引力和性格外向,特定的结构特征和社会观念之间存在联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号