首页> 外文期刊>Pattern recognition letters >A comparative study of facial appearance modeling methods for active appearance models
【24h】

A comparative study of facial appearance modeling methods for active appearance models

机译:活动外观模型的面部外观建模方法比较研究

获取原文
获取原文并翻译 | 示例

摘要

Active appearance models (AAMs) have been widely used in many face modeling and facial feature extraction methods. One of the problems of AAMs is that it is difficult to model a sufficiently wide range of human facial appearances, the pattern of intensities across a face image patch. Previous researches have used principal component analysis (PCA) for facial appearance modeling, but there has been little analysis and comparison between PCA and many other facial appearance modeling methods such as non-negative matrix factorization (NMF), local NMF (LNMF), and non-smooth NMF (ns-NMF). The main contribution of this paper is to find a suitable facial appearance modeling method for AAMs by a comparative study. In the experiments, PCA, NMF, LNMF, and ns-NMF were used to produce the appearance model of the AAMs and the root mean square (RMS) errors of the detected feature points were analyzed using the AR and BERC face databases. Experimental results showed that (1) if the appearance variations of testing face images were relatively non-sparser than those of training face images, the non-sparse methods (PCA. NMF) based AAMs outperformed the sparse methods (nsNMF, LNMF) based AAMs. (2) If the appearance variations of testing face images are relatively sparser than those of training face images, the sparse methods (nsNMF) based AAMs outperformed the non-sparse methods (PCA, NMF) based AAMs.
机译:主动外观模型(AAM)已被广泛用于许多面部建模和面部特征提取方法中。 AAM的问题之一是很难对足够广泛的人类面部外观(整个面部图像斑块的强度模式)进行建模。先前的研究已经使用主成分分析(PCA)进行面部外观建模,但是PCA与许多其他面部外观建模方法(例如非负矩阵分解(NMF),局部NMF(LNMF)和非平滑NMF(ns-NMF)。本文的主要贡献是通过比较研究找到了一种适用于AAM的面部外观建模方法。在实验中,使用PCA,NMF,LNMF和ns-NMF来生成AAM的外观模型,并使用AR和BERC人脸数据库分析了检测到的特征点的均方根(RMS)误差。实验结果表明:(1)如果测试面部图像的外观变化比训练面部图像的轮廓变化相对稀疏,则基于非稀疏方法(PCA。NMF)的AAM优于基于稀疏方法(nsNMF,LNMF)的AAM。 。 (2)如果测试面部图像的外观变化比训练面部图像的外观变化相对稀疏,则基于稀疏方法(nsNMF)的AAM优于基于非稀疏方法(PCA,NMF)的AAM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号