首页> 外文OA文献 >Magnetization dynamics at the nanoscale in nanoparticles and thin films: single-molecule magnets, magnetic vortices, and magnetic droplet solutions
【2h】

Magnetization dynamics at the nanoscale in nanoparticles and thin films: single-molecule magnets, magnetic vortices, and magnetic droplet solutions

机译:纳米粒子和薄膜中纳米级的磁化动力学:单分子磁体,磁涡旋和磁滴解决方案

摘要

[eng] Research in magnetic materials leads to new devices and technologies. As the technology progresses, the devices become smaller and this miniaturization allows more storage capacity and lower costs in the production of new technologies. As new and smaller materials are fabricated, new phenomena appear and thus new physics is needed to describe them. Nanomaterials meet characteristics of both the microscopic quantum world and the macroscopic classic world. This intermediate length scale is known as mesoscale. Nanomaterials can be obtained in a variety of forms, being nanoparticles and magnetic ultra-thin films some of the most used. These magnetic systems are very different in their composition: nanoparticles are grown with chemical reactions, and thin films are grown on a substrate by nanofabrication techniques such as sputtering or electron-beam evaporation. The magnetization might not be uniform in a magnetic thin film or in a large magnetic nanoparticle leading to the formation of magnetic domains. Magnetic domains are static structures that appear due to competition of the different magnetic energies and can be used to store and transport information. In all these systems, the magnetization dynamics gives rise to new behavior not visible in static measurements: quantum steps of the magnetization in molecular magnets; characteristic resonant frequencies that can be used to control the magnetic state of vortices; and formation of magnetic droplet solitons in thin films with perpendicular magnetic anisotropy. Understanding the dynamics of nanomaterials and the evolution of the magnetization is a key process to develop faster devices and technologies. The early studies of molecular magnets showed quantum effects at the macroscopic scale, which have allowed a better understanding of spin. Magnetic vortices have been proposed for multiple applications, from magnetic storage of information to cancer cell destruction. The recently discovered magnetic droplet soliton is also a very good candidate for technological applications due to the low current and magnetic field needed for its generation, and it is now a system with a growing interest in spintronics. In this dissertation we show some new dynamic phenomena. In the first part of the thesis we study systems that allow a macroscopic-spin model where spatial variations of magnetization are neglected. We develop a theory that sets the requirements for the observation of the rotational Doppler effect in a ferromagnetic system and we measure quantum effects in randomly oriented nanoparticles of a single-molecule magnet, which might be a good candidate for the observation of the Doppler effect. In the second part of the thesis, we study the magnetization dynamics in macroscopic systems that require a spatial dependence of the magnetic moment. We generate and control the dynamic states of the magnetic domains with oscillating fields, in the case of magnetic vortices, and with electrical currents, in the case of droplet solitons.
机译:[eng]磁性材料的研究产生了新的设备和技术。随着技术的进步,设备变得越来越小,并且这种小型化允许更多的存储容量和更低的新技术生产成本。当制造新的和较小的材料时,会出现新现象,因此需要新的物理学来描述它们。纳米材料满足微观量子世界和宏观经典世界的特征。这种中间长度刻度被称为中尺度。可以以多种形式获得纳米材料,其中最常用的是纳米颗粒和磁性超薄膜。这些磁性系统的组成非常不同:纳米颗粒通过化学反应生长,薄膜通过纳米制造技术(例如溅射或电子束蒸发)在基板上生长。在磁性薄膜或大的磁性纳米颗粒中,磁化强度可能不均匀,导致形成磁畴。磁畴是由于不同磁能的竞争而出现的静态结构,可用于存储和传输信息。在所有这些系统中,磁化动力学产生了在静态测量中不可见的新行为:分子磁体中磁化的量子级;可以用来控制涡流磁性状态的特征共振频率;在具有垂直磁各向异性的薄膜中形成磁滴孤子。了解纳米材料的动力学和磁化的演变是开发更快的设备和技术的关键过程。分子磁体的早期研究显示出宏观尺度的量子效应,这使人们对自旋有了更好的理解。已经提出了磁涡流用于多种应用,从信息的磁存储到癌细胞的破坏。由于其产生所需的低电流和磁场,最近发现的磁滴孤子也是技术应用的很好的候选者,现在它已成为对自旋电子学越来越感兴趣的系统。在本文中,我们展示了一些新的动力学现象。在论文的第一部分中,我们研究了允许宏观自旋模型的系统,其中忽略了磁化的空间变化。我们开发了一种理论,为铁磁系统中旋转多普勒效应的观测设定了要求,并测量了单分子磁体随机取向的纳米粒子中的量子效应,这可能是观察多普勒效应的良好候选者。在论文的第二部分中,我们研究了需要磁矩与空间相关的宏观系统中的磁化动力学。对于磁涡旋,我们利用振荡场生成和控制磁畴的动态状态;对于液滴孤子,我们利用电流生成并控制其动态状态。

著录项

  • 作者

    Lendínez Escudero Sergi;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号