首页> 外文OA文献 >Harnessing Collective Intelligence on Social Networks
【2h】

Harnessing Collective Intelligence on Social Networks

机译:利用社交网络上的集体智慧

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crowdsourcing is an approach to replace the work traditionally done by a single person with the collective action of a group of people via the Internet. It has established itself in the mainstream of research methodology in recent years using a variety of approaches to engage humans in solving problems that computers, as yet, cannot solve. Several common approaches to crowdsourcing have been successful, including peer production (in which the participants are inherently interested in contributing), microworking (in which participants are paid small amounts of money per task) and games or gamification (in which the participants are entertained as they complete the tasks). An alternative approach to crowdsourcing using social networks is proposed here. Social networks offer access to large user communities through integrated software applications and, as they mature, are utilised in different ways, with decentralised and unevenly-distributed organisation of content. This research investigates whether collective intelligence systems are facilitated better on social networks and how the contributed human effort can be optimised. These questions are investigated using two case studies of problem solving: anaphoric coreference in text documents and classifying images in the marine biology domain. Social networks themselves can be considered inherent, self-organised problem solving systems, an approach defined here as ?groupsourcing?, sharing common features with other crowdsourcing approaches; however, the benefits are tempered with the many challenges this approach presents. In comparison to other methods of crowdsourcing, harnessing collective intelligence on social networks offers a high-accuracy, data-driven and low-cost approach.
机译:众包是一种通过互联网由一群人的集体行动代替传统上由一个人完成的工作的一种方法。近年来,它已使用各种方法使人们参与解决计算机尚无法解决的问题,从而成为研究方法学的主流。众包的几种常见方法已经成功,包括同伴生产(参与者固有地对贡献有兴趣),微工作(参与者为每个任务支付少量金钱)和游戏或游戏化(参与者以他们完成了任务)。本文提出了使用社交网络进行众包的另一种方法。社交网络通过集成的软件应用程序提供对大型用户社区的访问,随着社交网络的成熟,它们以分散和分布不均的内容组织以不同的方式被利用。这项研究调查了是否可以在社交网络上更好地促进集体情报系统,以及如何优化人们的贡献。使用两个解决问题的案例研究了这些问题:文本文档中的回指共指和海洋生物学领域中的图像分类。社交网络本身可以被认为是固有的,自组织的问题解决系统,这里定义为“小组外包”,与其他众包方法具有共同特征。但是,这种方法带来的许多挑战削弱了收益。与其他众包方法相比,在社交网络上利用集体智慧提供了一种高精度,数据驱动和低成本的方法。

著录项

  • 作者

    Chamberlain J;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号