首页> 外文OA文献 >Penalized Regression Methods with Application to Generalized Linear Models, Generalized Additive Models, and Smoothing
【2h】

Penalized Regression Methods with Application to Generalized Linear Models, Generalized Additive Models, and Smoothing

机译:罚回归方法及其在广义线性模型,广义加性模型和平滑处理中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, penalized regression has been used for dealing problems which found in maximum likelihood estimation such as correlated parameters and a large number of predictors. The main issues in this regression is how to select the optimal model. In this thesis, Schall’s algorithm is proposed as an automatic selection of weight of penalty. The algorithm has two steps. First, the coefficient estimates are obtained with an arbitrary penalty weight. Second, an estimate of penalty weight λ can be calculated by the ratio of the variance of error and the variance of coefficient. The iteration is continued from step one until an estimate of penalty weight converge. The computational cost is minimized because the optimal weight of penalty could be obtained within a small number of iterations.udIn this thesis, Schall’s algorithm is investigated for ridge regression, lasso regression and two-dimensional histogram smoothing. The proposed algorithm are applied to real data sets and simulation data sets. In addition, a new algorithm for lasso regression is proposed. The performance of results of the algorithm was almost comparable in all applications. Schall’s algorithm can be an efficient algorithm for selection of weight of penalty.
机译:最近,惩罚回归已用于处理在最大似然估计中发现的问题,例如相关参数和大量预测变量。回归的主要问题是如何选择最佳模型。本文提出了Schall算法作为惩罚权重的自动选择方法。该算法有两个步骤。首先,以任意惩罚权重获得系数估计。其次,可以通过误差方差与系数方差之比来计算惩罚权重λ的估计。迭代从第一步继续进行,直到惩罚权重估计收敛为止。由于可以在少量的迭代中获得最优的权重权重,因此将计算成本最小化。 ud在本文中,研究了Schall算法的岭回归,套索回归和二维直方图平滑。将该算法应用于实际数据集和仿真数据集。另外,提出了套索回归的新算法。该算法的结果性能几乎在所有应用程序中都是可比的。 Schall的算法可以成为选择惩罚权重的有效算法。

著录项

  • 作者

    Utami Zuliana Sri;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号