首页> 外文OA文献 >Time- and spectral-domain holography for high-speedudprocessing of optical signals.
【2h】

Time- and spectral-domain holography for high-speedudprocessing of optical signals.

机译:高速 ud的时域和光谱域全息术光信号的处理。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ever-increasing traffic data requirements in telecommunication services lead to a continuousudneed for higher transmission capabilities. In this scenario, fiber-optic communications have proven toudbe a very promising way of achieving such high bitrates. Nowadays, wavelength division multiplexingud(WDM) systems support transmission capabilities of about 10 Tbps, through multiplexing of severaludhundred wavelengths with a single channel bit rate of ∼ 40 Gbps. For pre- and post- processing ofudinformation, WDM requires opto-electronic signal conversion circuits individually set and operatedudfor each different wavelength channel; therefore this evolution leads to an impractical increase ofudcircuitry complexity and power consumption. Moreover, with the transmission-capacity increaseudin WDM systems, coherent technologies have attracted a large interest over the recent years. Theudmotivation lies in finding methods for achieving the growing bandwidth demand with multileveludcomplex modulation formats. To implement high-order complex (amplitude and phase) modulationudformats, the optical in-phase and quadrature (IQ) components of the information signal need to beudsynthesized, processed and detected independently, additionally requiring proper synchronizationudof these two IQ optical paths.udTherefore, in spite of the fact that the combination of WDM and coherent technologies enables audmore efficient use of the available spectrum, it also hinders the required circuitry in the transmitter,udreceiver and intermediate network nodes. In this Thesis, we present and experimentally demonstrateudnew concepts and signal processing techniques that remarkably simplify the required electro-opticaludcircuitry (and consequently the power consumption) in coherent optical systems. Furthermore, weudalso develop new ultrafast all-optical signal processors, able to process the information directly inudthe optical domain at ultrafast speeds (ideally, with speeds into the THz regime). These opticaludprocessing systems are becoming increasingly important for a myriad of scientific and engineeringudapplications, including not only high-speed optical telecommunications but also optical computingudsystems, ultrafast biomedical imaging, or ultrafast measurement and characterization systems.udTheir fundamental goal is to avoid current electronic-based processing, which severely limits theudoperation speeds below a few tens of GHz and entails a bottleneck for the effective use of the highudbandwidth intrinsic to optics.udThe problem of simultaneously controlling the amplitude and phase of a complex electromagneticudsignal has long been solved in the spatial domain. Holography was developed as a lenslessudinterferometric imaging system that was able to record and subsequently reconstruct the originaludcomplex-valued information signal, in spite of the recording medium being sensitive to intensity-onlyudvariations. Holographic systems have been widely applied in a vast number of fields, such as 3Dudimaging, spatial-domain signal processing, microscopy or security. The basics of classical (spatialuddomain holography) are reviewed in Chapter 3, paying special attention to those concepts that willudserve as foundations for the original ideas presented through this work.udIn this Thesis, we propose and formulate for the first time, to the best of our knowledge, theudexact time-domain counterpart of spatial domain holography, by means of the space-time duality.udThis method, which is described in Chapter 4, enables simultaneous control of the amplitude andudphase of a temporal optical waveform with complex envelope using a simple setup composed ofuddevices sensitive to intensity-only or phase-only variations. To prove its effectiveness, several applicationsudof time-domain holography are experimentally demonstrated and the results are presentedudin this dissertation. First, as a proof of concept, we demonstrate generation of complex-modulatedudoptical waveforms using a simple setup mainly composed of an electro-optical intensity modulatorudand a band-pass filter. Then, these complex-envelope waveforms are detected (in amplitudeudand phase) using a heterodyne scheme based on an intensity-only photodetector. Additionally, weudpropose and implement a simplified scheme to perform electro-optical temporal phase conjugation.udThis holographic method greatly simplifies previous electro-optical approaches, avoiding the needudfor detection and subsequent processing of the phase of the optical signal prior to the electronicbasedudconjugation process. Instead, the proposed approach uses intensity-only photodetection andudmodulation components, combined with a band-pass filter, thus reducing the complexity and potentialudcost of the setup, minimizing errors and simplifying the procedure. Finally, we demonstrateudwavelength conversion of complex-envelope optical signals based on time-domain holography. Inudthis case, an all-optical approach based on nonlinear cross-phase modulation is used. This techniqueudexhibits important advantages with respect to all previous approaches that typically useudfour-wave mixing, as it avoids the stringent phase-matching condition and requires at least oneudorder of magnitude less power in the employed pump signals.udUsing the Fourier-transform property of duality between the time domain and the frequencyuddomain, we also propose and formulate, for the first time, the concept of spectral-domain holography,udwhich is described in Chapter 5. This novel concept enables the simultaneous control of theudamplitude and phase of an optical spectral response by just manipulating the amplitude spectrum.udSpectral-domain holography is applied to the design of two kinds of signal processors. First, weudimplement complex-valued and non-symmetrical optical pulse shaping using a scheme based onudtime-domain spectral shaping, which achieves temporal resolutions in the sub-picosecond regimeudbut has been typically restricted to symmetric and intensity-only pulse shaping operations. In thisudscheme, the modulating signal that performs the spectral shaping is a spectral hologram, enablingudthe synthesis of complex-envelope output waveforms using a setup identical to that of previousudspectral shaping methods. The proposed methodology can be considered as the time-domain counterpartudof (spatial domain) Vander-Lugt filters. Then, we apply spectral-domain holography to theudimplementation of non-minimum-phase optical pulse processors using fiber Bragg gratings (FBGs)udoperating in transmission, which can be considered as optical linear filters with a minimum-phaseudspectral response. In this case, the complex-valued spectral response of the target filter is encodedudin an amplitude-only spectral response (the spectral hologram). The use of FBGs operating inudtransmission has well-known advantages with respect to the reflective configuration. In this Thesis,udwe present and experimentally demonstrate an additional extraordinary advantage: an FBGudoperating in transmission is able to implement signal processing functionalities with bandwidthsudwell in the THz regime (one order of magnitude higher than conventionally achieved bandwidths)udthanks to the degree of freedom available in choosing the spectral phase in reflection. In particular,udwe propose the use of a quadratic spectral phase in reflection, which translates into a linear chirp,udallowing the increase of the grating’s operation bandwidth without increasing the grating spatialudresolution.udThe novel concepts of time- and spectral-domain holography can be foreseen as powerful toolsudfor the development of new techniques for the generation, measurement and processing of ultrafast complex-envelope optical temporal waveforms. In this Thesis, we have demonstrated interestingudmethods aimed at (i) simplifying the current required setup in coherent systems, and (ii) allowingudthe implementation of simpler, arbitrary ultrafast optical signal processing devices, which are keyudcomponents for future, low power-consumption high-capacity telecommunication networks. Moreover,udthe vast number of applications of spatial-domain holography allows us to predict a similarudbroad range of applications for the time/spectral-domain holography.
机译:电信服务中不断增长的业务数据需求导致对更高传输能力的持续需求。在这种情况下,光纤通信已被证明是实现如此高比特率的一种非常有前途的方式。如今,波分复用(WDM)系统通过以约40 Gbps的单通道比特率复用数以百计的波长来支持大约10 Tbps的传输能力。为了对信息进行预处理和后处理,WDM需要为每个不同的波长通道分别设置和操作光电信号转换电路。因此,这种演变导致电路复杂性和功耗的增加不切实际。此外,随着传输容量的增加,WDM系统的发展,近年来,相关技术引起了人们的极大兴趣。动机在于寻找通过多级 udcomplex调制格式来实现不断增长的带宽需求的方法。为了实现高阶复杂(幅度和相位)调制 udformat,信息信号的光同相和正交(IQ)分量需要被 uds合成,处理和独立检测,另外还需要对这两个IQ进行适当的同步 ud因此,尽管将WDM与相干技术相结合,可以更有效地利用可用频谱,但它也阻碍了发送器,接收器和中间网络节点中所需的电路。在这篇论文中,我们提出并通过实验证明了新颖的概念和信号处理技术,这些技术和信号处理技术极大地简化了相干光学系统中所需的电光/电路(从而降低了功耗)。此外,我们还将开发新的超快全光信号处理器,能够以超快速度(理想情况下,速度达到THz体制)直接在光域中处理信息。这些光学/处理系统对于众多科学和工程应用变得越来越重要,不仅包括高速光通信,还包括光学计算系统,超快速生物医学成像或超快速测量和表征系统。其基本目标是为避免当前的基于电子的处理,这严重限制了 ud运行速度低于几十GHz,并带来了有效利用光学固有的高 udbandwidth的瓶颈。 ud同时控制信号幅度和相位的问题长期以来,复杂的电磁信号在空间领域已得到解决。全息术是作为无透镜干涉成像系统开发的,尽管记录介质对仅强度偏差敏感,但它能够记录并随后重建原始 udcomplex值的信息信号。全息系统已广泛应用于许多领域,例如3D 数字成像,空间域信号处理,显微镜或安全性。在第3章中回顾了经典(空间 uddomain全息术)的基础知识,并特别注意了那些将作为通过本文提出的原始思想的基础的概念。 ud在本文中,我们首次提出并提出了这一概念。据我们所知,空间时空全息的 udexact时域对应物,通过时空对偶性。 ud此方法(在第4章中进行了介绍)可以同时控制振幅和使用由对仅强度或仅相位变化敏感的 uddevice组成的简单设置,可以得到具有复杂包络的时间光波形。为了证明其有效性,通过实验证明了时域全息的几种应用,并在本文中给出了结果。首先,作为概念验证,我们演示了使用简单的设置(主要由电光强度调制器 ud和带通滤波器组成)生成复杂调制的 uppupp波形。然后,使用基于仅强度的光检测器的外差方案检测这些复包络波形(幅度/倍数相位)。此外,我们提议并实施一种简化的方案来执行电光时间相位共轭。该全息方法极大地简化了先前的电光方法,从而避免了在检测光信号相位之前对光信号的相位进行检测和后续处理的需求。电子化共轭过程。取而代之的是,所提出的方法使用仅强度的光检测和非调制组件,并与带通滤波器相结合,从而降低了设置的复杂性和潜在的非成本,最小化误差并简化了程序。最后,我们演示了基于时域全息技术的复包络光信号的 udwave转换。在这种情况下,使用基于非线性交叉相位调制的全光学方法。与通常使用 udfour-wave混合的所有先前方法相比,该技术具有重要的优势,因为它避免了严格的相位匹配条件,并且在所采用的泵浦信号中需要至少少一个 ud数量级的功率。时域和频率 uddomain之间的对偶的傅立叶变换性质,我们还首次提出并制定了谱域全息术的概念,该概念在第5章中进行了描述。这种新颖的概念实现了同时控制仅通过处理振幅谱,就可以确定光谱响应的幅值和相位。 ud光谱域全息技术可用于两种信号处理器的设计。首先,我们使用基于 udtime-domain频谱整形的方案来实现复数值和非对称光脉冲整形,该方案在亚皮秒范围内实现了时间分辨率 ud,但是通常仅限于对称且仅强度的脉冲整形操作。在此方案中,执行频谱整形的调制信号是频谱全息图,从而可以使用与以前的超谱整形方法相同的设置来合成复杂包络输出波形。所提出的方法可以被认为是时域对应物 udof(空间域)范德-卢格特滤波器。然后,我们将光谱域全息技术应用于非最小相位光脉冲处理器的实现(使用光纤布拉格光栅(FBG)在传输中超导),可以将其视为具有最小相位超光谱响应的光学线性滤波器。在这种情况下,目标滤波器的复数值光谱响应在仅振幅光谱响应(光谱全息图)中编码。就反射配置而言,使用 udtransmission中运行的FBG具有众所周知的优势。在本文中, udwe提出并通过实验证明了另一项非凡的优势:FBG 在传输中超性能能够实现信号处理功能,其带宽在THz范围内保持良好(比常规实现的带宽高一个数量级)感谢选择反射光谱相位的自由度。特别是, udwe建议在反射中使用二次光谱相位,这会转化为线性chi,从而在不增加光栅空间 udresolution的情况下,允许增加光栅的工作带宽。 ud时间和光谱的新颖概念可以预见,领域全息术将成为开发用于生成,测量和处理超快速复包络光学时间波形的新技术的强大工具。在本论文中,我们展示了一些有趣的 udmethods方法,旨在(i)简化相干系统中当前所需的设置,以及(ii)允许 ud实现更简单,任意的超快光信号处理设备,这是未来的关键 udcomponents,低功耗大容量电信网络。而且,那里的空间域全息术的大量应用使我们能够预测时域/光谱域全息术的类似的广泛的应用范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号