首页> 外文OA文献 >Numerical investigations of low-density nozzle flow by solving the Boltzmann equation
【2h】

Numerical investigations of low-density nozzle flow by solving the Boltzmann equation

机译:求解玻尔兹曼方程的低密度喷嘴流场数值研究

摘要

A two-dimensional finite-difference code to solve the BGK-Boltzmann equation has been developed. The solution procedure consists of three steps: (1) transforming the BGK-Boltzmann equation into two simultaneous partial differential equations by taking moments of the distribution function with respect to the molecular velocity u(sub z), with weighting factors 1 and u(sub z)(sup 2); (2) solving the transformed equations in the physical space based on the time-marching technique and the four-stage Runge-Kutta time integration, for a given discrete-ordinate. The Roe's second-order upwind difference scheme is used to discretize the convective terms and the collision terms are treated as source terms; and (3) using the newly calculated distribution functions at each point in the physical space to calculate the macroscopic flow parameters by the modified Gaussian quadrature formula. Repeating steps 2 and 3, the time-marching procedure stops when the convergent criteria is reached. A low-density nozzle flow field has been calculated by this newly developed code. The BGK Boltzmann solution and experimental data show excellent agreement. It demonstrated that numerical solutions of the BGK-Boltzmann equation are ready to be experimentally validated.
机译:已经开发出用于求解BGK-Boltzmann方程的二维有限差分码。求解过程包括三个步骤:(1)通过采用相对于分子速度u(sub z)的分布函数矩,将权重因子为1和u(sub z)(增补2); (2)对于给定的离散坐标,基于时间行进技术和四阶段Runge-Kutta时间积分,求解物理空间中的变换方程。 Roe的二阶迎风差分方案用于离散对流项,而碰撞项被视为源项; (3)在物理空间的每个点上使用新计算的分布函数,通过修正的高斯求积公式计算宏观流动参数。重复步骤2和3,达到收敛标准后,时间步长过程将停止。通过此新开发的代码已计算出低密度喷嘴流场。 BGK Boltzmann解决方案和实验数据显示出极好的一致性。结果表明,BGK-Boltzmann方程的数值解已准备好进行实验验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号