首页> 外文OA文献 >Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems
【2h】

Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

机译:遗传系统在最优线性二次调节器问题中的闭环谱位移

摘要

In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
机译:在有限维系统的最优线性二次调节器问题中,可以使用一种称为alpha移位的方法来产生一个闭环系统,该系统的频谱位于某些特定垂直线的左侧;即,具有规定的稳定性的闭环系统。本文将阿尔法移位扩展到遗传系统。作为无穷大尺寸,可以通过将开环半群生成器的身份乘以alpha倍,然后解决最佳的调节器问题来完成移位。但是,这种方法不适用于Kappel和Salamon最近开发的用于遗传控制问题的新近似方案。由于该方案是迄今为止用于遗传系统线性调节器问题数值求解的最佳方案之一,因此需要一种用于移动闭环频谱的替代方法。开发了可与Kappel-Salamon近似方案一起使用的alpha移位技术。同时考虑了连续时间和离散时间问题。数值例子说明了该方法的可行性。

著录项

  • 作者

    Gibson J. S.; Rosen I. G.;

  • 作者单位
  • 年度 1985
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号