首页> 外文OA文献 >Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes
【2h】

Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

机译:求解双曲方程组的有限差分格式的时间稳定边界条件:方法及其在高阶紧致格式中的应用

摘要

We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.
机译:我们为双曲系统的紧凑(类Pade)高阶有限差分方案提供了一种构造所需精度的边界条件(数值和物理)的系统方法。首先,找到近似导数的罗伯零件求和公式。然后引入“同时近似项”(SAT)来处理边界条件。即使在系统情况下,此过程也会导致时间稳定的方案。给出了四阶紧凑型情况的显式构造。数值研究表明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号