首页>
外文OA文献
>Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection
【2h】
Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection
展开▼
机译:机械系统线性调节器设计的封闭式解决方案,包括最佳加权矩阵选择
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.
展开▼