首页> 外文OA文献 >Design of a power management and distribution system for a thermionic-diode powered spacecraft
【2h】

Design of a power management and distribution system for a thermionic-diode powered spacecraft

机译:热电子二极管供电的航天器的电源管理和分配系统的设计

摘要

The Electrical Systems Development Branch of the Power Technology Division at the NASA Lewis Research Center in Cleveland, Ohio is designing a Power Management and Distribution (PMAD) System for the Air Force's Integrated Solar Upper Stage (ISUS) Engine Ground Test Demonstration (EGD). The ISUS program uses solar-thermal propulsion to perform orbit transfers from Low Earth Orbit (LEO) to Geosynchronous Orbit (GEO) and from LEO to Molnya. The ISUS uses the same energy conversion receiver to perform the LEO to High Earth Orbit (HEO) transfer and to generate on-orbit electric power for the payloads. On-orbit power generation is accomplished via two solar concentrators heating a dual-cavity graphite-core which has Thermionic Diodes (TMD's) encircling each cavity. The graphite core and concentrators together are called the Receiver and Concentrator (RAC). The TDM-emitters reach peak temperatures of approximately 2200K, and the TID-collectors are run at approximately 1000K. Because of the high Specific Impulse (I(sup sp)) of solar thermal propulsion relative to chemical propulsion, and because a common bus is used for communications, GN&C, power, etc., a substantial increase in payload weight is possible. This potentially allows for a stepdown in the required launch vehicle size or class for similar payload weight using conventional chemical propulsion and a separate spacecraft bus. The ISUS power system is to provide 1000W(sub e) at 28+/-6V(sub dc) to the payload/spacecraft from a maximum TID generation capability of 1070W(sub e) at 2200K. Producing power with this quality, protecting the spacecraft from electrical faults and accommodating operational constraints of the TID's are the responsibilities of the PMAD system. The design strategy and system options examined along with the proposed designs for the Flight and EGD configurations are discussed herein.
机译:位于俄亥俄州克利夫兰的美国宇航局刘易斯研究中心电力技术部门的电气系统开发部门正在为空军的集成太阳上位(ISUS)发动机地面测试演示(EGD)设计电源管理和分配(PMAD)系统。 ISUS计划使用太阳热推进来执行从低地球轨道(LEO)到地球同步轨道(GEO)以及从LEO到Molnya的轨道转移。 ISUS使用相同的能量转换接收器执行LEO到高地球轨道(HEO)的传输,并为有效载荷产生在轨电功率。在轨发电是通过两个太阳能集中器加热双腔石墨芯来完成的,该双芯石墨芯具有环绕每个腔的热电子二极管(TMD)。石墨芯和集中器一起称为接收器和集中器(RAC)。 TDM发射器的峰值温度约为2200K,TID收集器的工作温度约为1000K。由于太阳热推进相对于化学推进具有较高的比冲(I(sup sp)),并且由于将公共总线用于通信,GN&C,功率等,有效载荷重量可能会大大增加。对于潜在的重量,这可能允许使用常规化学推进器和单独的航天器总线来降低所需运载火箭的尺寸或类别,以减轻类似的有效载荷重量。 ISUS电源系统将从2200K时的最大TID产生能力1070W(sub e)向负载/航天器提供28 +/- 6V(sub dc)的1000W(sub e)。以这种质量产生功率,保护航天器免受电气故障并适应TID的操作约束是PMAD系统的职责。本文讨论了设计策略和系统选项,以及针对Flight和EGD配置的建议设计。

著录项

  • 作者

    Kimnach Greg L.;

  • 作者单位
  • 年度 1996
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号