首页> 外文OA文献 >An algorithm to design finite field multipliers using a self-dual normal basis
【2h】

An algorithm to design finite field multipliers using a self-dual normal basis

机译:基于自对偶正态设计有限域乘法器的算法

摘要

Finite field multiplication is central in the implementation of some error-correcting coders. Massey and Omura have presented a revolutionary design for multiplication in a finite field. In their design, a normal base is utilized to represent the elements of the field. The concept of using a self-dual normal basis to design the Massey-Omura finite field multiplier is presented. Presented first is an algorithm to locate a self-dual normal basis for GF(2 sup m) for odd m. Then a method to construct the product function for designing the Massey-Omura multiplier is developed. It is shown that the construction of the product function base on a self-dual basis is simpler than that based on an arbitrary normal base.
机译:有限域乘法在某些纠错编码器的实现中至关重要。 Massey和Omura提出了一种革命性的设计,用于有限域中的乘法。在他们的设计中,一个正常的基础被用来代表这个领域的元素。提出了使用自对偶正态基础设计Massey-Omura有限域乘法器的概念。首先介绍的是一种为奇数m定位GF(2 sup m)的自对偶正态基础的算法。然后,提出了一种构造积函数的方法,以设计Massey-Omura乘法器。结果表明,基于自对偶的乘积函数的构造比基于任意正常基准的乘积函数的构造更简单。

著录项

  • 作者

    Wang C. C.;

  • 作者单位
  • 年度 1987
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号