首页> 外文OA文献 >Generating Ground Reference Data for a Global Impervious Surface Survey
【2h】

Generating Ground Reference Data for a Global Impervious Surface Survey

机译:生成地面不透水地面参考数据

摘要

We are engaged in a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. The GLS data from Landsat provide an unprecedented opportunity to map global urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such as buildings, roads and parking lots. Finally, with GLS data available for the 1975, 1990, 2000, and 2005 time periods, and soon for the 2010 period, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. Our approach works across spatial scales using very high spatial resolution commercial satellite data to both produce and evaluate continental scale products at the 30m spatial resolution of Landsat data. We are developing continental scale training data at 1m or so resolution and aggregating these to 30m for training a regression tree algorithm. Because the quality of the input training data are critical, we have developed an interactive software tool, called HSegLearn, to facilitate the photo-interpretation of high resolution imagery data, such as Quickbird or Ikonos data, into an impervious versus non-impervious map. Previous work has shown that photo-interpretation of high resolution data at 1 meter resolution will generate an accurate 30m resolution ground reference when coarsened to that resolution. Since this process can be very time consuming when using standard clustering classification algorithms, we are looking at image segmentation as a potential avenue to not only improve the training process but also provide a semi-automated approach for generating the ground reference data. HSegLearn takes as its input a hierarchical set of image segmentations produced by the HSeg image segmentation program [1, 2]. HSegLearn lets an analyst specify pixel locations as being either positive or negative examples, and displays a classification of the study area based on these examples. For our study, the positive examples are examples of impervious surfaces and negative examples are examples of non-impervious surfaces. HSegLearn searches the hierarchical segmentation from HSeg for the coarsest level of segmentation at which selected positive example locations do not conflict with negative example locations and labels the image accordingly. The negative example regions are always defined at the finest level of segmentation detail. The resulting classification map can be then further edited at a region object level using the previously developed HSegViewer tool [3]. After providing an overview of the HSeg image segmentation program, we provide a detailed description of the HSegLearn software tool. We then give examples of using HSegLearn to generate ground reference data and conclude with comments on the effectiveness of the HSegLearn tool.
机译:我们正在进行一个项目,根据Landsat全球土地调查(GLS)数据集,生成2000年和2010年整个地球的3,000万个防渗层数据集。来自Landsat的GLS数据提供了前所未有的机会,以这种分辨率首次以前所未有的细节和准确性绘制了全球城市化地图。而且,Landsat的空间分辨率对于准确解决建筑物,道路和停车场等城市目标绝对至关重要。最后,有了1975年,1990年,2000年和2005年以及2010年不久的GLS数据,现在也可以在此空间规模上量化由于城市化而导致的土地覆盖/使用变化。我们的方法使用非常高分辨率的商业卫星数据在空间尺度上工作,以Landsat数据的30m空间分辨率生产和评估大陆尺度的产品。我们正在以1m左右的分辨率开发大陆规模的训练数据,并将这些数据汇总到30m,以训练回归树算法。由于输入训练数据的质量至关重要,因此我们开发了一种交互式软件工具HSegLearn,以帮助将高分辨率图像数据(如Quickbird或Ikonos数据)的照片解释为不可渗透与不可渗透的地图。先前的工作表明,以1米的分辨率对高分辨率数据进行照片解释时,将其粗化到该分辨率后,将生成一个准确的30m分辨率地面参考。由于使用标准聚类分类算法时此过程可能非常耗时,因此我们将图像分割视为一种可能的途径,不仅可以改善训练过程,而且可以提供一种半自动化的方法来生成地面参考数据。 HSegLearn将由HSeg图像分割程序[1、2]生成的图像分割的分层集作为输入。 HSegLearn可让分析人员将像素位置指定为正例或负例,并根据这些示例显示研究区域的分类。在我们的研究中,正面示例是不渗透表面的示例,负面示例是非渗透表面的示例。 HSegLearn从HSeg中搜索分层细分,以找到最粗糙的细分级别,在该级别上所选的阳性示例位置与阴性示例位置不冲突,并相应地标记图像。否定示例区域始终在细分细节的最佳级别上定义。然后可以使用先前开发的HSegViewer工具[3]在区域对象级别进一步编辑生成的分类图。在概述了HSeg图像分割程序之后,我们提供了HSegLearn软件工具的详细说明。然后,我们给出使用HSegLearn生成地面参考数据的示例,并以对HSegLearn工具有效性的评论作为结束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号