首页> 外文OA文献 >Development of Thermal Barriers for Solid Rocket Motor Nozzle Joints
【2h】

Development of Thermal Barriers for Solid Rocket Motor Nozzle Joints

机译:固体火箭发动机喷嘴接头热障的开发

摘要

The Space Shuttle solid rocket motor case assembly joints are sealed using conventional 0-ring seals. The 5500+F combustion gases are kept a safe distance away from the seals by thick layers of insulation. Special joint-fill compounds are used to fill the joints in the insulation to prevent a direct flowpath to the seals. On a number of occasions. NASA has observed in several of the rocket nozzle assembly joints hot gas penetration through defects in the joint- fill compound. The current nozzle-to-case joint design incorporates primary, secondary and wiper (inner-most) 0-rings and polysulfide joint-fill compound. In the current design, 1 out of 7 motors experience hot gas to the wiper 0-ring. Though the condition does not threaten motor safety, evidence of hot gas to the wiper 0-ring results in extensive reviews before resuming flight. NASA and solid rocket motor manufacturer Thiokol are working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design and a thermal barrier, This paper presents burn-resistance, temperature drop, flow and resiliency test results for several types of NASA braided carbon-fiber thermal barriers. Burn tests were performed to determine the time to burn through each of the thermal barriers when exposed to the flame of an oxy-acetylene torch (5500 F), representative of the 5500 F solid rocket motor combustion temperatures. Thermal barriers braided out of carbon fibers endured the flame for over 6 minutes, three times longer than solid rocket motor burn time. Tests were performed on two thermal barrier braid architectures, denoted Carbon-3 and Carbon-6, to measure the temperature drop across and along the barrier in a compressed state when subjected to the flame of an oxyacetylene torch. Carbon-3 and Carbon-6 thermal barriers were excellent insulators causing temperature drops through their diameter of up to a 2800 and 2560 F. respectively. Gas temperature 1/4" downstream of the thermal barrier were within the downstream Viton 0-ring temperature limit of 600 F. Carbon-6 performed extremely well in subscale rocket "char" motor tests when subjected to hot gas at 3200 F for an 11 second rocket firing, simulating the maximum downstream joint cavity fill time. The thermal barrier reduced the incoming hot gas temperature by 2200 F in an intentionally oversized gap defect, spread the incoming jet flow, and blocked hot slag, thereby offering protection to the downstream 0-rings.
机译:航天飞机固体火箭发动机壳体总成接头使用常规的0形密封圈密封。 5500 + F燃烧气体通过厚绝缘层与密封件保持安全距离。特殊的接缝填充料用于填充绝缘中的接缝,以防止直接流向密封件。在许多场合。美国宇航局已经在几个火箭喷嘴组件的接头处观察到热气通过接头填充料中的缺陷渗入。当前的喷嘴到外壳的接头设计包括一级,二级和刮水器(最内部)0环和聚硫接头填充化合物。在当前的设计中,每7个电机中就有1个将热气输送到刮水器0形圈。尽管这种情况不会威胁到电动机的安全,但在重新开始飞行之前,对刮水器0环产生热气的证据会引起广泛的审查。美国宇航局和固体火箭发动机制造商Thiokol通过实施更可靠的J形腿设计和隔热层,致力于改善喷嘴到外壳的接头设计。本文介绍了几种耐燃性,温度下降,流动性和弹性测试结果类型的NASA编织碳纤维热障。进行燃烧测试,以确定暴露于氧-乙炔炬(5500 F)的火焰中时,通过每个热障的燃烧时间,代表5500 F固体火箭发动机的燃烧温度。用碳纤维编织而成的隔热层可承受火焰超过6分钟,是固体火箭发动机燃烧时间的三倍。对两种热障编织层体系结构(分别表示为Carbon-3和Carbon-6)进行了测试,以测量在经受氧乙炔火炬火焰的压缩状态下,跨过和沿障壁的温度降。 Carbon-3和Carbon-6隔热层是出色的绝缘体,它们的直径分别高达2800 F和2560 F会引起温度下降。热障下游的气体温度1/4“在下游的Viton 0环温度极限内为600F。当在3200 F的高温气体下进行11时,Carbon-6在小规模火箭“炭”发动机测试中的表现非常出色第二次火箭射击,模拟了最大下游关节腔填充时间,热障在有意过大的间隙缺陷中将进入的热气温度降低了2200 F,扩散了进入的射流并阻塞了热渣,从而为下游0提供了保护-戒指。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号