首页> 外文OA文献 >Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles
【2h】

Aerothermodynamic Flight Simulation Capabilities for Aerospace Vehicles

机译:航空航天器的气动热模拟飞行能力

摘要

Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamics and physical processes, is the genesis for the design and development of advanced space transportation vehicles and provides crucial information to other disciplines such as structures, materials, propulsion, avionics, and guidance, navigation and control. Sources of aerothermodynamic information are ground-based facilities, Computational Fluid Dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this aerothermodynamic triad provides the optimum aerothermodynamic design to safely satisfy mission requirements while reducing design conservatism, risk and cost. The iterative aerothermodynamic process for initial screening/assessment of aerospace vehicle concepts, optimization of aerolines to achieve/exceed mission requirements, and benchmark studies for final design and establishment of the flight data book are reviewed. Aerothermodynamic methodology centered on synergism between ground-based testing and CFD predictions is discussed for various flow regimes encountered by a vehicle entering the Earth s atmosphere from low Earth orbit. An overview of the resources/infrastructure required to provide accurate/creditable aerothermodynamic information in a timely manner is presented. Impacts on Langley s aerothermodynamic capabilities due to recent programmatic changes such as Center reorganization, downsizing, outsourcing, industry (as opposed to NASA) led programs, and so forth are discussed. Sample applications of these capabilities to high Agency priority, fast-paced programs such as Reusable Launch Vehicle (RLV)/X-33 Phases I and 11, X-34, Hyper-X and X-38 are presented and lessons learned discussed. Lastly, enhancements in ground-based testing/CFD capabilities necessary to partially/fully satisfy future requirements are addressed.
机译:空气动力学包括空气动力学,空气加热,流体动力学和物理过程,是先进太空运输工具的设计和开发的起源,并为其他学科提供重要信息,例如结构,材料,推进,航空电子以及制导,导航和控制。空气动力学信息的来源是地面设施,计算流体动力学(CFD)和工程计算机代码以及飞行实验。利用这种空气动力学三重轴可提供最佳的空气动力学设计,以安全地满足飞行任务的要求,同时降低设计的保守性,风险和成本。审查了航空航天器概念的初始筛选/评估,为达到/超出任务要求而优化的航空公司以及最终设计和建立飞行数据手册的基准研究的迭代空气动力学过程。讨论了以地面测试和CFD预测之间的协同作用为中心的空气热力学方法,探讨了从低地球轨道进入地球大气层的车辆遇到的各种流动状态。概述了及时提供准确/可计算的空气热力学信息所需的资源/基础设施。讨论了由于最近的计划更改(例如中心重组,缩小规模,外包,行业(与NASA相对)而导致的计划)对Langley的空气动力学功能的影响。本文介绍了这些功能在机构优先级高,节奏快的程序(例如可重复使用的运载火箭(RLV)/ X-33 I和11,X-34,Hyper-X和X-38)上的示例应用,并讨论了所学到的教训。最后,解决了部分/完全满足未来要求所必需的地面测试/ CFD功能的增强。

著录项

  • 作者

    Miller Charles G.;

  • 作者单位
  • 年度 1998
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号