首页> 外文OA文献 >Stormtime ring current and radiation belt ion transport: Simulations and interpretations
【2h】

Stormtime ring current and radiation belt ion transport: Simulations and interpretations

机译:Stormtime环流和辐射带离子传输:模拟和解释

摘要

We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in a given model storm (e.g., reduction of all the impulse amplitudes by half reduces the discrepancy factor by at least its square root) and also when we average our results over an ensemble of 20 model storms (agreement is within a factor of 1.2 without impulse-amplitude reduction). We use our simulation results also to map phase-space densities f in accordance with Liouville's theorem. We find that the stormtime transport of approximately greater than 145-keV ions produces little change in f-bar the drift-averaged phase-space density on any drift shell of interest. However, the stormtime transport produces a major enhancement from the pre-storm phase-space density at energies approximately 30-145 keV, which are representative of the stormtime ring current.
机译:我们使用动态导引中心模型来研究环流和辐射带离子的暴风雨时间传输。我们跟踪对流电场中对一系列离子能量的模型与次风暴相关的脉冲,从而响应代表性离子的引导中心的运动。我们简单的磁层模型使我们能够将数值结果与颗粒传输的分析描述进行定量比较(例如,利用径向扩散的拟线性理论)。我们发现10-145-keV离子可以进入L约3,在那里它们可以形成风暴时间环电流,主要是从(捕获)区域之外,在该区域中粒子执行闭合的漂移路径。相反,高能离子的传输(在L处大约3时大于145 keV)证明类似于径向扩散。为我们的模型风暴计算的准线性扩散系数不会随粒子能量而平滑变化,因为我们的脉冲发生在特定的(尽管是随机确定的)时间。尽管存在光谱不规则性,但即使对于单个暴风雨,准线性理论也提供了令人惊讶的准确描述,该过程描述了大约大于145keV的离子。对于我们模型风暴的4种不同实现,从模拟获得的扩散系数D(sup sim,sub LL)与准线性扩散系数D(sup ql,sub LL)之间的几何平均差异为2.3、2.3、1.5 ,和3.0。我们发现通过调用漂移共振展宽以平滑D(sup sim,sub LL)和D(sup ql,sub LL)和D(sup ql,sub LL)之间的这些差异可以稍微减小)。对于4次不同的风暴,D(sup sim,sub LL)和D(sup ql,sub LL)之间剩余差异的平均值分别为1.9、2.1、1.5和2.7。当我们在给定的模型风暴中系统地减小脉冲幅度时,我们会找到更好的一致性(例如,将所有脉冲幅度减小一半,至少将差异因子减小其平方根),并且在对20个模型风暴(协议在1.2的范围内而没有减小脉冲幅度)。我们还使用我们的仿真结果,根据Liouville定理映射相空间密度f。我们发现,大约大于145keV离子的风暴时间传输在任何感兴趣的漂移壳上的f-bar漂移平均相空间密度上几乎不会产生变化。但是,风暴时间的传输在能量大约为30-145 keV的情况下大大增强了风暴前的相空间密度,这代表了风暴时间环电流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号