首页> 外文OA文献 >Textural-Contextual Labeling and Metadata Generation for Remote Sensing Applications
【2h】

Textural-Contextual Labeling and Metadata Generation for Remote Sensing Applications

机译:遥感应用的纹理上下文标记和元数据生成

摘要

Despite the extensive research and the advent of several new information technologies in the last three decades, machine labeling of ground categories using remotely sensed data has not become a routine process. Considerable amount of human intervention is needed to achieve a level of acceptable labeling accuracy. A number of fundamental reasons may explain why machine labeling has not become automatic. In addition, there may be shortcomings in the methodology for labeling ground categories. The spatial information of a pixel, whether textural or contextual, relates a pixel to its surroundings. This information should be utilized to improve the performance of machine labeling of ground categories. Landsat-4 Thematic Mapper (TM) data taken in July 1982 over an area in the vicinity of Washington, D.C. are used in this study. On-line texture extraction by neural networks may not be the most efficient way to incorporate textural information into the labeling process. Texture features are pre-computed from cooccurrence matrices and then combined with a pixel's spectral and contextual information as the input to a neural network. The improvement in labeling accuracy with spatial information included is significant. The prospect of automatic generation of metadata consisting of ground categories, textural and contextual information is discussed.
机译:尽管在过去的三十年中进行了广泛的研究并且出现了几种新的信息技术,但是使用遥感数据对地面类别进行机器标记并没有成为常规过程。为了达到可接受的标签准确度,需要大量的人工干预。许多根本原因可以解释为什么机器标签没有变为自动。此外,标注地面类别的方法可能存在缺陷。像素的空间信息(无论是纹理的还是上下文的)都将像素与其周围环境相关联。该信息应用于改善地面类别的机器标记性能。这项研究使用1982年7月在华盛顿特区附近地区获取的Landsat-4专题测绘仪(TM)数据。通过神经网络进行在线纹理提取可能不是将纹理信息合并到标记过程中的最有效方法。从同现矩阵预先计算出纹理特征,然后将其与像素的光谱和上下文信息结合起来,作为神经网络的输入。包含空间信息的标记准确性的提高是显着的。讨论了自动生成由地面类别,纹理和上下文信息组成的元数据的前景。

著录项

  • 作者

    Kiang Richard K.;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号