首页> 外文OA文献 >Immunity-Based Aircraft Fault Detection System
【2h】

Immunity-Based Aircraft Fault Detection System

机译:基于抗扰度的飞机故障检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.
机译:在本文报道的研究中,我们已经开发并应用了用于飞机故障检测的人工免疫系统(AIS)算法,作为对先前智能飞行控制(IFC)工作的扩展。尽管先前的研究已经确立了IFC的优势,但需要加强的一个弱点领域是由于指挥失败的地面而导致的控制死区。由于IFC方法使用故障检测而不进行检测,因此死区虽然会由于学习而随着时间的推移而减少,但会出现死区并导致处理质量下降。如果可以识别出故障,则可以进一步消除该死区,以确保快速排除故障并获得更好的处理质量。本文介绍了一种基于免疫的方法的应用,该方法可以检测各种已知的和无法预料的故障。该方法结合了来自感官数据的飞机正常运行行为的知识,并概率性地生成了一组模式检测器,该模式检测器可以检测表明不安全的飞行中行为的行为模式中的任何异常(包括故障)。我们基于实值否定选择算法开发了一种称为MILD(多级免疫学习检测)的工具,该工具可以生成少量的专用检测器(作为已知故障条件的签名)和较大的一组通用检测器,用于未知(或可能的)故障条件。一旦检测到并确定了故障,自适应控制系统便会利用该检测信息,通过利用可用资源(控制面)来稳定飞机。我们使用试验性的基于运动的模拟设施对在正常和各种模拟故障条件下收集的数据集进行了试验。报告的结果来自一组测试案例,这些案例反映了所提出的基于抗扰性的故障检测算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号