首页> 外文OA文献 >Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule
【2h】

Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule

机译:火星科学实验室入门胶囊的空气热力学环境定义

摘要

An overview of the aerothermodynamic environments definition status is presented for the Mars Science Laboratory entry vehicle. The environments are based on Navier-Stokes flowfield simulations on a candidate aeroshell geometry and worst-case entry heating trajectories. Uncertainties for the flowfield predictions are based primarily on available ground data since Mars flight data are scarce. The forebody aerothermodynamics analysis focuses on boundary layer transition and turbulent heating augmentation. Turbulent transition is expected prior to peak heating, a first for Mars entry, resulting in augmented heat flux and shear stress at the same heatshield location. Afterbody computations are also shown with and without interference effects of reaction control system thruster plumes. Including uncertainties, analysis predicts that the heatshield may experience peaks of 225 W/sq cm for turbulent heat flux, 0.32 atm for stagnation pressure, and 400 Pa for turbulent shear stress. The afterbody heat flux without thruster plume interference is predicted to be 7 W/sq cm on the backshell and 10 W/sq cm on the parachute cover. If the reaction control jets are fired near peak dynamic pressure, the heat flux at localized areas could reach as high as 76 W/sq cm on the backshell and 38 W/sq cm on the parachute cover, including uncertainties. The final flight environments used for hardware design will be updated for any changes in the aeroshell configuration, heating design trajectories, or uncertainties.
机译:列出了火星科学实验室进入飞行器的空气动力学环境定义状态的概述。这些环境是基于Navier-Stokes流场模拟的,该模拟基于候选的机壳几何形状和最坏情况下的进入加热轨迹。由于火星飞行数据稀少,因此流场预测的不确定性主要基于可用的地面数据。前体空气热力学分析的重点是边界层过渡和湍流加热增强。预计在峰值加热之前会出现湍流过渡,这是火星首次进入,导致在同一隔热罩位置增加热通量和剪切应力。还显示了在有和没有反应控制系统推进器羽流的干扰影响下的车身后部计算。包括不确定性在内,分析预测,热屏蔽罩的湍流通量峰值可能为225 W / sq cm,滞流压力峰值为0.32 atm,湍流剪切应力为400 Pa。在没有推进器羽流干扰的情况下,车身后部的热通量在后壳上预计为7 W / sq cm,在降落伞罩上为10 W / sq cm。如果将反应控制射流发射到接近峰值动压力的位置,则局部区域的热通量在后壳上可能高达76 W / sq cm,在降落伞罩上可能高达38 W / sq cm,包括不确定性。用于硬件设计的最终飞行环境将根据机体配置,加热设计轨迹或不确定性的任何变化进行更新。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号