首页> 外文OA文献 >Language Model Combination and Adaptation Using Weighted Finite State Transducers
【2h】

Language Model Combination and Adaptation Using Weighted Finite State Transducers

机译:使用加权有限状态传感器的语言模型组合和自适应

摘要

In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences
机译:在语音识别系统中,语言模型(LM)通常是通过训练和组合多个n-gram模型来构建的。它们既可以用来表示在不同文本源中找到的不同体裁或任务,也可以捕获不同语言符号序列(例如音节和单词)的随机属性。无监督的LM适应还可以用于进一步提高对各种样式或任务的鲁棒性。使用这些技术时,通常需要进行大量软件更改。在本文中,研究了一种基于加权有限状态传感器(WFST)的替代方法,该方法更为通用,可用于LM组合和自适应。由于它完全基于定义明确的WFST操作,因此需要对解码工具进行最小的更改。可以灵活地支持各种LM组合配置。还提出了一种高效的实时WFST解码算法。在最新的广播音频识别任务上,使用基于历史的适应性多级LM建模音节和单词序列的相对错误率获得了7.3%的显着提高

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号