首页> 外文OA文献 >Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
【2h】

Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

机译:蓄冷发动机喷嘴侧向载荷的瞬态三维分析

摘要

Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
机译:对再生冷却的高纵横比喷嘴的启动侧载荷物理特性进行了三维数值研究。这项研究的目的是确定三维侧向载荷物理特性,并使用锚定计算方法来计算相关的空气动力学侧向载荷。计算方法基于非结构化网格,基于压力的计算流体动力学公式,以及基于发动机系统仿真的瞬态进气条件。对绝热壁和冷却壁都进行了计算,以了解边界条件的影响。在整个研究过程中使用了有限速率化学,因此始终包括燃烧效果。结果表明,三种类型的冲击发展是造成侧向载荷的原因:燃烧波的产生;燃烧波的产生;燃烧波的产生。自由冲击分离,有限冲击分离以及同时自由冲击和有限冲击分离之间的过渡;以及整个嘴唇的震动震荡。壁边界条件极大地影响了计算得出的侧向载荷的物理性:绝热喷嘴更倾向于自由休克分离,而冷却喷嘴更倾向于限制休克分离,从而导致冷却喷嘴的峰值侧向载荷比绝热喷嘴更高。通过将计算的物理场与测试观测场的物理场进行比较,可以得出结论,冷却壁是更现实的边界条件,限制冲击分离流在整个唇部的振荡及其相关的切向冲击运动是主要的侧向载荷。再生冷却的高纵横比火箭发动机的物理学。

著录项

  • 作者

    Wang Ten-See;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号