首页> 外文OA文献 >A Fast Method of Deriving the Kirchhoff Formula for Moving Surfaces
【2h】

A Fast Method of Deriving the Kirchhoff Formula for Moving Surfaces

机译:快速推导运动表面的基尔霍夫公式的方法

摘要

The Kirchhoff formula for a moving surface is very useful in many wave propagation problems, particularly in the prediction of noise from rotating machinery. Several publications in the last two decades have presented derivations of the Kirchhoff formula for moving surfaces in both time and frequency domains. Here we present a method originally developed by Farassat and Myers in time domain that is both simple and direct. It is based on generalized function theory and the useful concept of imbedding the problem in the unbounded three-dimensional space. We derive an inhomogeneous wave equation with the source terms that involve Dirac delta functions with their supports on the moving data surface. This wave equation is then solved using the simple free space Green's function of the wave equation resulting in the Kirchhoff formula. The algebraic manipulations are minimal and simple. We do not need the Green's theorem in four dimensions and there is no ambiguity in the interpretation of any terms in the final formulas. Furthermore, this method also gives the simplest derivation of the classical Kirchhoff formula which has a fairly lengthy derivation in physics and applied mathematics books. The Farassat-Myers method can be used easily in frequency domain.
机译:运动表面的基尔霍夫公式在许多波传播问题中非常有用,尤其是在预测旋转机械产生的噪声时。在过去的二十年中,有几篇出版物介绍了在时域和频域中移动表面的Kirchhoff公式的推导。在这里,我们提出了一种由法拉萨特和迈尔斯最初在时域中开发的方法,该方法既简单又直接。它基于广义函数理论和将问题嵌入无边界三维空间的有用概念。我们用源项推导了一个不均匀的波动方程,该源项涉及Dirac delta函数及其在移动数据面上的支持。然后使用波动方程的简单自由空间格林函数求解该波动方程,得出基尔霍夫公式。代数运算是最小且简单的。我们不需要在四个维度上的格林定理,并且在最终公式中对任何术语的解释都没有歧义。此外,该方法还给出了经典基尔霍夫公式的最简单推导,该公式在物理学和应用数学书中都有相当长的推导。 Farassat-Myers方法可以轻松地在频域中使用。

著录项

  • 作者

    Posey Joe W.; Farassat F.;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号