首页> 外文学位 >Fast high-order integral equation methods for PDEs with moving interfaces.
【24h】

Fast high-order integral equation methods for PDEs with moving interfaces.

机译:具有运动界面的PDE的快速高阶积分方程方法。

获取原文
获取原文并翻译 | 示例

摘要

Many problems in Science and Engineering require the solution of partial differential equations (PDEs) on moving domains. Stencil-based numerical techniques like the Finite Element Method (FEM) tend to be computationally expensive for such problems. For certain classes of PDEs, there are promising alternatives that are based on integral equations. Unlike FEM-based schemes, they do not require unstructured mesh-generation and remeshing. In this work, we construct fast, high-order solvers based on integral equations for two problems: Solving the heat equation on moving domains; Simulating the dynamics of deformable vesicles suspended in viscous fluid flows.;For the heat equation, we describe a fast high-order accurate method for its solution on domains with moving Dirichlet or Neumann boundaries and distributed forces. We assume that the motion of the boundary is prescribed. Our method extends the work of L. Greengard and J. Strain, "A fast algorithm for the evaluation of heat potentials", Comm. Pure & Applied Math. 1990. Our scheme is based on a time-space Chebyshev pseudo-spectral collocation discretization, which is combined with a recursive product quadrature rule to accurately and efficiently approximate convolutions with the Green's function for the heat equation. We present numerical results that exhibit up to sixteenth-order convergence rates. Assuming N time steps and M spatial discretization points, the evaluation of the solution of the heat equation at the same number of points in space-time requires O (N M log M) work.;Vesicle flows model numerous biophysical phenomena that involve deforming particles interacting with a Stokesian fluid. While conventional techniques can be used to simulate isolated vesicles, new approaches are needed for large number of interacting vesicles. An integral equation formulation leads to a system of nonlinear integro-differential equations whose unknowns reside on the fluid-vesicle interfaces. We have developed a novel numerical scheme for such equations. It incorporates a new time-stepping scheme that allows much larger time-steps than the existing explicit schemes. The associated linear systems are solved in optimal time using spectral preconditioners, FFTs and the Fast Multipole Method.
机译:科学与工程学中的许多问题都需要在运动域上求解偏微分方程(PDE)。基于模板的数值技术(例如有限元方法(FEM))在处理此类问题上往往会很昂贵。对于某些类别的PDE,有一些基于积分方程的有前途的替代方法。与基于FEM的方案不同,它们不需要非结构化的网格生成和重新网格化。在这项工作中,我们基于积分方程构造了两个问题的快速高阶求解器:在运动域上求解热方程;模拟悬浮在粘性流体流中的可变形囊泡的动力学。对于热方程,我们描述了一种快速的高阶精确方法,用于求解具有动态Dirichlet或Neumann边界和分布力的区域。我们假设边界的运动是规定的。我们的方法扩展了L. Greengard和J. Strain的工作,“热势评估的快速算法”,通讯。纯粹与应用数学。 1990年。我们的方案基于时空Chebyshev伪谱搭配离散化,将其与递归乘积正交规则相结合,以精确高效地对热方程的格林函数进行卷积近似。我们提出的数值结果显示出高达十六阶的收敛速度。假设有N个时间步长和M个空间离散点,则在相同的时空点上计算热方程的解需要O(NM log M)的工作。囊泡流模拟了许多生物物理现象,这些现象涉及变形粒子相互作用与斯托克斯流体。尽管可以使用常规技术来模拟分离的囊泡,但对于大量相互作用的囊泡,仍需要新的方法。积分方程式形成了一个非线性积分-微分方程组,其未知数存在于液泡界面上。我们已经为这种方程式开发了一种新颖的数值方案。它合并了一个新的时间步长方案,与现有的显式方案相比,它允许更大的时间步长。使用频谱预处理器,FFT和快速多极子方法,可以在最佳时间内解决相关的线性系统。

著录项

  • 作者

    Veerapaneni, Shravan K.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号