首页> 外文OA文献 >Estimation and Bias Correction of Aerosol Abundance using Data-driven Machine Learning and Remote Sensing
【2h】

Estimation and Bias Correction of Aerosol Abundance using Data-driven Machine Learning and Remote Sensing

机译:基于数据驱动的机器学习和遥感的气溶胶丰度估算和偏差校正

摘要

Air quality information is increasingly becoming a public health concern, since some of the aerosol particles pose harmful effects to peoples health. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. The comparison between the AOD measured from the ground-based Aerosol Robotic Network (AERONET) system and the satellite MODIS instruments at 550 nm shows that there is a bias between the two data products. We performed a comprehensive analysis exploring possible factors which may be contributing to the inter-instrumental bias between MODIS and AERONET. The analysis used several measured variables, including the MODIS AOD, as input in order to train a neural network in regression mode to predict the AERONET AOD values. This not only allowed us to obtain an estimate, but also allowed us to infer the optimal sets of variables that played an important role in the prediction. In addition, we applied machine learning to infer the global abundance of ground level PM2.5 from the AOD data and other ancillary satellite and meteorology products. This research is part of our goal to provide air quality information, which can also be useful for global epidemiology studies.
机译:由于一些气溶胶颗粒对人们的健康造成了有害影响,因此空气质量信息正日益成为公共卫生关注的焦点。气溶胶丰度的一种广泛使用的度量是气溶胶光学深度(AOD)。 AOD是单位横截面的垂直大气柱上的积分消光系数,它表示该垂直剖面中的气溶胶通过吸收或散射阻止光透射的程度。从地面气溶胶机器人网络(AERONET)系统和卫星MODIS仪器在550 nm处测得的AOD之间的比较表明,这两种数据产品之间存在偏差。我们进行了全面的分析,探讨了可能导致MODIS和AERONET之间仪器间偏差的因素。分析使用了包括MODIS AOD在内的几个测量变量作为输入,以便在回归模式下训练神经网络以预测AERONET AOD值。这不仅使我们能够获得估计值,而且还可以推断出在预测中起重要作用的变量的最佳集合。此外,我们应用机器学习从AOD数据以及其他辅助卫星和气象产品推断出全球地面PM2.5的丰度。这项研究是我们提供空气质量信息的目标之一,这对于全球流行病学研究也很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号