首页> 外文OA文献 >Compatibility Condition in Theory of Solid Mechanics (Elasticity, Structures, and Design Optimization)
【2h】

Compatibility Condition in Theory of Solid Mechanics (Elasticity, Structures, and Design Optimization)

机译:固体力学理论中的相容性条件(弹性,结构和设计优化)

摘要

The strain formulation in elasticity and the compatibility condition in structural mechanics have neither been understood nor have they been utilized. This shortcoming prevented the formulation of a direct method to calculate stress. We have researched and understood the compatibility condition for linear problems in elasticity and in finite element analysis. This has lead to the completion of the method of force with stress (or stress resultant) as the primary unknown. The method in elasticity is referred to as the completed Beltrami-Michell formulation (CBMF), and it is the integrated force method (IFM) in structures. The dual integrated force method (IFMD) with displacement as the primary unknown has been formulated. IFM and IFMD produce identical responses. The variational derivation of the CBMF yielded the new boundary compatibility conditions. The CBMF can be used to solve stress, displacement, and mixed boundary value problems. The IFM in structures produced high-fidelity response even with a modest finite element model. The IFM has influenced structural design considerably. A fully utilized design method for strength and stiffness limitation has been developed. The singularity condition in optimization has been identified. The CBMF and IFM tensorial approaches are robust formulations because of simultaneous emphasis on the equilibrium equation and the compatibility condition.
机译:既不了解也不利用弹性的应变公式和结构力学中的相容性条件。该缺点阻止了计算应力的直接方法的制定。我们已经研究并理解了弹性和有限元分析中线性问题的相容条件。这导致完成了以应力(或应力合力)为主要未知数的作用力方法。弹性方法称为完成的Beltrami-Michell公式(CBMF),它是结构中的积分力方法(IFM)。提出了以位移为主要未知数的双重积分力法(IFMD)。 IFM和IFMD产生相同的响应。 CBMF的变分推导产生了新的边界相容条件。 CBMF可用于解决应力,位移和混合边界值问题。即使使用有限的有限元模型,结构中的IFM也会产生高保真度响应。 IFM对结构设计产生了很大影响。已经开发出一种用于强度和刚度限制的充分利用的设计方法。确定了优化中的奇点条件。由于同时强调平衡方程和相容条件,因此CBMF和IFM张量方法是可靠的公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号