In practice, laterally loaded piles are most often modelled using a ‘Beam-on-Nonlinear-Winkler-Foundation’ (BNWF) approach. While well calibrated p-y curves exist for non-liquefied soils (e.g. soft clay and sands), the profession still lacks reliable p-y curves for liquefied soils. In fact, the latter should be consistent with the observed strain-hardening behaviour exhibited by liquefied samples in both element and physical model tests. It is recognised that this unusual strain-hardening behaviour is induced by the tendency of the liquefied soil to dilate upon undrained shearing, which ultimately results in a gradual decrease of excess pore pressure and consequent increase in stiffness and strength. The aim of this paper is twofold. First it proposes an easy-to-use empirical model for constructing stress-strain relationships for liquefied soils. This only requires three soil parameters which can be conveniently determined by means of laboratory tests, such as a cyclic triaxial and cyclic simple shear tests. Secondly, a method is illustrated for the construction of p-y curves for liquefiable soils from the proposed stress-strain model. This involves scaling of stress and strain into compatible soil reaction p and pile deflection y, respectively. The scaling factors for stress and strain axis are computed following an energy-based approach, analogous to the upper-bound method used in classical plasticity theory. Finally, a series of results from centrifuge tests are presented, whereby p-y curves are back-calculated from available experimental data and qualitatively compared with that proposed by the authors.
展开▼