首页> 外文OA文献 >Response surface methodology using Gaussian processes: Towards optimizing the trans-stilbene epoxidation over Co2+-NaX catalysts
【2h】

Response surface methodology using Gaussian processes: Towards optimizing the trans-stilbene epoxidation over Co2+-NaX catalysts

机译:使用高斯过程的响应面方法:致力于优化Co2 + -NaX催化剂上的反式二苯乙烯环氧化

摘要

Response surface methodology (RSM) relies on the design of experiments and empirical modelling techniques to find the optimum of a process when the underlying fundamental mechanism of the process is largely unknown. This paper proposes an iterative RSM framework, where Gaussian process (GP) regression models are applied for the approximation of the response surface. GP regression is flexible and capable of modelling complex functions, as opposed to the restrictive form of the polynomial models that are used in traditional RSM. As a result, GP models generally attain high accuracy of approximating the response surface, and thus provide great chance of identifying the optimum. In addition, GP is capable of providing both prediction mean and variance, the latter being a measure of the modelling uncertainty. Therefore, this uncertainty can be accounted for within the optimization problem, and thus the process optimal conditions are robust against the modelling uncertainty. The developed method is successfully applied to the optimization of trans-stilbene conversion in the epoxidation of trans-stilbene over cobalt ion-exchanged faujasite zeolites (Co2+–NaX) catalysts using molecular oxyge
机译:响应面方法论(RSM)依靠实验和经验建模技术的设计来找到过程的最佳方法,而该过程的基本基本机制尚不清楚。本文提出了一种迭代RSM框架,其中将高斯过程(GP)回归模型应用于响应面的逼近。与传统RSM中使用的多项式模型的限制性形式相反,GP回归具有灵活性并且能够对复杂的函数进行建模。结果,GP模型通常获得接近响应表面的高精度,因此为确定最佳模型提供了很大的机会。此外,GP能够提供预测均值和方差,后者是建模不确定性的度量。因此,可以在优化问题内解决该不确定性问题,因此过程最佳条件对于建模不确定性具有鲁棒性。所开发的方法已成功应用于分子离子氧在钴离子交换八面沸石(Co2 + –NaX)催化剂上反式二苯乙烯转化环的优化中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号